Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Pharm ; 606: 120906, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34298100

RESUMO

The objective of this work was to investigate the effect of microfluidics on the quality attributes of metformin hydrochloride-loaded poly lactic-co-glycolic acid polymeric particles (MFH-PLGA PPs) when compared to a traditional double emulsion batch method. The relationship of encapsulation and loading efficiencies, yield %, particle size, surface morphology, and release profile with process and formulation variables were determined using design of experiments (DoE). The effects of the dispersal method of the primary (sonication vs. vortex) or secondary emulsion (microfluidics vs. batch), polyvinyl alcohol concentration (PVA), and drug to polymer ratio were investigated. The PPs' size was impacted by both the PVA concentration and the type of primary and secondary emulsion dispersion methods. Microfluidics significantly increased the PPs' yield %, particle size, encapsulation, and loading efficiencies. The higher loaded microfluidic-based PPs had more burst release, following first-order release kinetics when compared to the lower loaded batch-based particles, which followed the Korsmeyer-Peppas model for release kinetics. Microfluidic-based PPs exhibited a smooth, porous, more uniform, and larger particle size with hollow structure than the batch-based PPs with a matrix-like structure. In conclusion, we have elucidated the effect of microfluidics on the quality attributes of MFH-PLGA PPs and their comparison to the traditional batch technique.


Assuntos
Microfluídica , Polímeros , Portadores de Fármacos , Emulsões , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA