Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 116, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229295

RESUMO

Biotreatment of oily sludge and the involved microbial communities, particularly in saline environments, have been rarely investigated. We enriched a halophilic bacterial consortium (OS-100) from petroleum refining oily sludge, which degraded almost 86% of the aliphatic hydrocarbon (C10-C30) fraction of the oily sludge within 7 days in the presence of 100 g/L NaCl. Two halophilic hydrocarbon-degrading bacteria related to the genera Chromohalobacter and Halomonas were isolated from the OS-100 consortium. Hydrocarbon degradation by the OS-100 consortium was relatively higher compared to the isolated bacteria, indicating potential synergistic interactions among the OS-100 community members. Exclusion of FeCl2, MgCl2, CaCl2, trace elements, and vitamins from the culture medium did not significantly affect the hydrocarbon degradation efficiency of the OS-100 consortium. To the contrary, hydrocarbon biodegradation dropped from 94.1 to 54.4% and 5% when the OS-100 consortium was deprived from phosphate and nitrogen sources in the culture medium, respectively. Quantitative PCR revealed that alkB gene expression increased up to the 3rd day of incubation with 11.277-fold, consistent with the observed increments in hydrocarbon degradation. Illumina-MiSeq sequencing of 16 S rRNA gene fragments revealed that the OS-100 consortium was mainly composed of the genera Halomonas, Idiomarina, Alcanivorax and Chromohalobacter. This community structure changed depending on the culturing conditions. However, remarkable changes in the community structure were not always associated with remarkable shifts in the hydrocarbonoclastic activity and vice versa. The results show that probably synergistic interactions between community members and different subpopulations of the OS-100 consortium contributed to salinity tolerance and hydrocarbon degradation.


Assuntos
Petróleo , Esgotos , Esgotos/microbiologia , Óleos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Biodegradação Ambiental , Archaea/metabolismo , Meios de Cultura/metabolismo
2.
Molecules ; 26(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34299397

RESUMO

We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha-Rha-C10-C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids' composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.


Assuntos
Proteínas de Bactérias/metabolismo , Gases/farmacologia , Glicolipídeos/biossíntese , Glicosiltransferases/metabolismo , Óleos Voláteis/farmacologia , Pseudomonas/metabolismo , Percepção de Quorum , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Ramnose/metabolismo , Tensoativos/farmacologia , Volatilização
3.
Front Microbiol ; 13: 998076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212842

RESUMO

We studied the biodegradation of oily sludge generated by a petroleum plant in Bahrain by a bacterial consortium (termed as AK6) under different bioprocess conditions. Biodegradation of petroleum hydrocarbons in oily sludge (C11-C29) increased from 24% after two days to 99% after 9 days of incubation in cultures containing 5% (w/v) of oily sludge at 40°C. When the nitrogen source was excluded from the batch cultures, hydrocarbon biodegradation dropped to 45% within 7 days. The hydrocarbon biodegradation decreased also by increasing the salinity to 3% and the temperature above 40°C. AK6 tolerated up to 50% (w/v) oily sludge and degraded 60% of the dichloromethane-extractable oil fraction. Illumina-MiSeq analyses revealed that the AK6 consortium was mainly composed of Gammaproteobacteria (ca. 98% of total sequences), with most sequences belonging to Klebsiella (77.6% of total sequences), Enterobacter (16.7%) and Salmonella (5%). Prominent shifts in the bacterial composition of the consortium were observed when the temperature and initial sludge concentration increased, and the nitrogen source was excluded, favoring sequences belonging to Pseudomonas and Stenotrophomonas. The AK6 consortium is endowed with a strong oily sludge tolerance and biodegradation capability under different bioprocess conditions, where Pseudomonas spp. appear to be crucial for hydrocarbon biodegradation.

4.
Environ Sci Pollut Res Int ; 29(22): 32702-32716, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35015225

RESUMO

Microbial biodegradation is a key process for the removal of estrogens during wastewater treatment. At least four degradation pathways for natural estrogens have been proposed. However, major estrogen degraders and the occurrence of different estrogen biodegradation pathways in wastewater treatment plants have been rarely investigated. This study was conducted to elucidate estrone biodegradation pathway and to identify key estrone-degrading bacteria in activated sludge from a major wastewater treatment plant in Bahrain. The biodegradation experiments were performed in activated sludge microcosms supplemented with estrone. Sludge samples were retrieved at time intervals to analyze the biodegradation metabolites and the temporal shifts in the bacterial community composition. Chemical analysis revealed the biodegradation of more than 90% of the added estrone within 6 days, and the compounds 4-hydroxyestrone and pyridinestrone acid, which are typical markers of the 4,5-seco pathway of aerobic estrone biodegradation, were detected. Temporal shifts in the relative abundance of bacteria were most prominent among members of Proteobacteria and Bacteroidetes. While the alphaproteobacterial genera Novosphingobium and Sphingoaurantiacus were significantly enriched (from ≤ 6% to an average of 31%) in the estrone-amended activated sludge after 2 days of incubation, the bacteroidete Pedobacter was uniquely detected in these microcosms at day 10. The relative abundance of Polyangia (Nannocyctis) increased to an average of 10 ± 0.4% in the estrone-amended activated sludge after 4 days of incubation. Enrichment cultivation of bacteria from the activated sludge on estrone resulted in a mixed culture that was capable of degrading estrone. An estrone-degrading strain was isolated from this mixed culture and was affiliated with the known estrogen-degrading Alphaproteobacteria Sphingobium estrogenivorans. We conclude that estrone degradation in the activated sludge from the studied wastewater treatment plant proceeds via the 4,5-seco pathway and is most likely mediated by alphaproteobacterial taxa.


Assuntos
Alphaproteobacteria , Microbiota , Bactérias/metabolismo , Biodegradação Ambiental , Estrogênios/análise , Estrona/análise , Esgotos/química
5.
Front Cell Infect Microbiol ; 12: 868205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034694

RESUMO

In this study, we evaluated the use of a predictive computational approach for SARS-CoV-2 genetic variations analysis in improving the current variant labeling system. First, we reviewed the basis of the system developed by the World Health Organization (WHO) for the labeling of SARS-CoV-2 genetic variants and the derivative adapted by the United States Centers for Disease Control and Prevention (CDC). Both labeling systems are based on the virus' major attributes. However, we found that the labeling criteria of the SARS-CoV-2 variants derived from these attributes are not accurately defined and are used differently by the two agencies. Consequently, discrepancies exist between the labels given by WHO and the CDC to the same variants. Our observations suggest that giving the variant of concern (VOC) label to a new variant is premature and might not be appropriate. Therefore, we used a comparative computational approach to predict the effects of the mutations on the virus structure and functions of five VOCs. By linking these data to the criteria used by WHO/CDC for variant labeling, we ascertained that a predictive computational comparative approach of the genetic variations is a good way for rapid and more accurate labeling of SARS-CoV-2 variants. We propose to label all emergent variants, variant under monitoring or variant being monitored (VUM/VBM), and to carry out computational predictive studies with thorough comparison to existing variants, upon which more appropriate and informative labels can be attributed. Furthermore, harmonization of the variant labeling system would be globally beneficial to communicate about and fight the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Pandemias , Estados Unidos
6.
Biotechnol Rep (Amst) ; 28: e00572, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33365264

RESUMO

We enriched and characterized a biodesulfurizing consortium (designated as MG1). The MG1 consortium reduced the total sulfur of diesel by 25 % and utilized each of the diesel-born compounds dibenzothiophene (DBT), benzothiophene (BT), 4-methyldibenzothiophene (4-MDBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) as a sole sulfur source. MiSeq analysis revealed compositional shifts in the MG1 community according to the type of the sulfur source. A DBT-grown MG1 culture had Klebsiella, Pseudomonas, Rhodococcus and Sphingomonas as the most abundant genera. When diesel or 4, 6-DMDBT was provided as a sole sulfur source, Klebsiella and Pseudomonas spp. were the most abundant. In the BT culture, Rhodococcus spp. were the key biodesulfurizers, while Klebsiella, Pseudomonas and Sphingomonas spp. dominated the 4-MDBT-grown consortium. MG1 also utilized 2-hydroxybiphenyl (the product of the 4S biodesulfurization pathway) where Pseudomonas spp. uniquely dominated the consortium. The data improves our understanding of the sulfur source-driven structural adaptability of biodesulfurizing consortia.

7.
Front Microbiol ; 5: 423, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177318

RESUMO

Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like biodesulfurization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA