Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257358

RESUMO

A new class of benzimidazole-based derivatives (4a-j, 5, and 6) with potential dual inhibition of EGFR and BRAFV600E has been developed. The newly synthesized compounds were submitted for testing for antiproliferative activity against the NCI-60 cell line. All newly synthesized compounds 4a-j, 5, and 6 were selected for testing against a panel of sixty cancer cell lines at a single concentration of 10 µM. Some compounds tested demonstrated remarkable antiproliferative activity against the cell lines tested. Compounds 4c, 4e, and 4g were chosen for five-dose testing against 60 human tumor cell lines. Compound 4c demonstrated strong selectivity against the leukemia subpanel, with a selectivity ratio of 5.96 at the GI50 level. The most effective in vitro anti-cancer assay derivatives (4c, 4d, 4e, 4g, and 4h) were tested for EGFR and BRAFV600E inhibition as potential targets for antiproliferative action. The results revealed that compounds 4c and 4e have significant antiproliferative activity as dual EGFR/BRAFV600E inhibitors. Compounds 4c and 4e induced apoptosis by increasing caspase-3, caspase-8, and Bax levels while decreasing the anti-apoptotic Bcl2 protein. Moreover, molecular docking studies confirmed the potential of compounds 4c and 4e to act as dual EGFR/BRAFV600E inhibitors.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas B-raf , Humanos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/farmacologia , Antinematódeos , Linhagem Celular Tumoral , Benzimidazóis/farmacologia , Receptores ErbB
2.
Bioorg Chem ; 129: 106143, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191430

RESUMO

Three series of novel 1-aryl-3-(4-methylsulfonylphenyl) pyrazole derivatives were synthesized, characterized by several spectroscopic techniques, and investigated as potential anti-inflammatory and anticancer agents. The biological evaluation showed that almost all the synthesized compounds have significant potency and selectivity for the COX-2 enzyme over COX-1 with noticeable anti-inflammatory activity compared to celecoxib and indomethacin. Accordingly, compounds 8a, 8b, 8e, 8j, 8l, 9a, 9b, 9c, and 10b showed the best COX-2 inhibition (IC50 ranged from 0.059 to 0.079 µM) with good anti-inflammatory activity (% of edema inhibition ranged from 87.9 to 67.5). Moreover, compound 8b possessed the highest selectivity index regarding COX-2 isozyme (SI = 211) in comparison to celecoxib (SI = 312) with good in vivo anti-inflammatory activity (% edema inhibition = 77.70 after 5 h). Also, compounds 8a, 8b, 8j, 8l, and 9a showed ulcerogenic liability and histopathological changes close to celecoxib. Molecular docking and dynamics simulations were also conducted to illustrate the binding modes inside the COX-2 active site. Furthermore, all compounds were screened against three cancer cell line panels to determine their antiproliferative properties by MTT assay. Compounds 8a, 8b, and 8e along with their cyclized forms 9a, 9b, and 9c exhibited a considerable antiproliferative effect on liver (IC50: 6.81-19.71 µM), colon (IC50: 7.64-15.34 µM), and breast (IC50: 6.77-18.41 µM) cancer cell lines. More importantly, compounds 8a, 8e, 9a, and 9b were found to be safe on normal HEK-293T kidney cells in comparison to cancer. cells, especially compound 8e with IC50 value of 66.45 µM. Mechanistic studies demonstrated the apoptotic activity of the most active compounds 8a, 8e, 9a, and 9b on MCF-7 cancer cells by inducing a strong S phase cell cycle arrest suggesting that the mechanism of its antiproliferative activity may be through COX-2 inhibition. Finally, the hit compounds 8a, 8b and 9a were discovered to have selective COX-2 inhibitory activity and good anti-inflammatory activity with minimal ulcerogenic effect as well as potent anticancer activity.


Assuntos
Antineoplásicos , Inibidores de Ciclo-Oxigenase 2 , Humanos , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Celecoxib/uso terapêutico , Anti-Inflamatórios/química , Edema/induzido quimicamente , Edema/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade
3.
Phytother Res ; 36(3): 1310-1325, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112408

RESUMO

Isoflavones are considered one of the most extensively studied plant-derived phytoestrogenic compounds. Of these, Biochanin A (Bio-A), a natural isoflavone abundant in cabbage, alfalfa, and red clover, has drawn a lot of attention. As reported in multiple studies, Bio-A possesses a promising anticancer activity against estrogen receptor-positive (ER+) breast cancer. The current study investigated the working hypothesis that Bio-A could synergistically enhance the potency of 5-fluorouracil (5-FU) in ER+ breast cancer. The hypothesis was tested both in vitro on hormone receptor-positive (MCF-7) and triple-negative breast cancer cells (MDA-MB231). Additionally, in vivo studies were performed in the Ehrlich solid-phase carcinoma mouse model. The in vitro cytotoxicity studies revealed that Bio-A synergistically increased the potency of 5-FU in both MCF-7 and MDA-MB231 cell lines. The synergistic effect of 5-FU/Bio-A combination was verified in vivo. The combination therapy (where 5-FU was used at one fourth its full dose) led to a significant 75% reduction in tumor volume after two treatment cycles. This was in addition to producing a significant 2.1-fold increase in tumor necrosis area% compared to mock-treated control. In conclusion, the current study presents the first preclinical evidence for the potential merit of 5-FU/Bio-A combination for the treatment of ER+ breast cancer. The synergistic antitumor effect of Bio-A/ 5-FU combination can be, at least partly, attributed to Bio-A-mediated suppression of ER-α/Akt axis and the augmentation of 5-FU-mediated proapoptotic effects. © 2022 John Wiley & Sons, Ltd.


Assuntos
Carcinoma , Isoflavonas , Animais , Apoptose , Linhagem Celular Tumoral , Sinergismo Farmacológico , Fluoruracila/farmacologia , Genisteína/farmacologia , Humanos , Isoflavonas/farmacologia , Camundongos
4.
Bioorg Chem ; 113: 105019, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091286

RESUMO

Vascular endothelial growth factor receptor (VEGFR) is one of the well-known targets that control angiogenesis and cancer progression. In this study, we are reporting the design, synthesis and biological evaluation of a series of 4-substituted thieno[2,3-d]pyrimidine derivatives as VEGFR-2 inhibitors. The design of these compounds was based on interactions extracted from crystal structure of potent pyrrolo[3,2-d]pyrimidine inhibitor VIII with VEGFR-2 (PDB: 3VHE). In addition to these interactions, the new compounds were also designed to interact with residues in the solvent accessible region such as Asn923. Accordingly, the thienopyrimidine target compounds were synthesized and subjected to VEGFR-2 enzyme inhibition assay. Several target compounds (7d-f, 8b-c, 8e-g and 15c) exhibited potent inhibitory activities against VEGFR-2 with IC50 values in low nanomolar range. Compounds 8b and 8e revealed exceptionally potent inhibitory activity with IC50 of 5 and 3.9 nM, respectively. The molecular docking analysis and molecular dynamics simulation were also performed to further investigate these findings.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sítios de Ligação , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Biomed Chromatogr ; 35(2): e4986, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33118207

RESUMO

Two green, simple, and accurate chromatographic methods were developed and validated for the simultaneous determination of omeprazole and aspirin mixture in the presence of salicylic acid, a major impurity of aspirin. Method A is a reversed-phase ultra-high-performance liquid chromatography; the separation was performed on a C18 column, with a mobile phase composed of ethanol:0.1% aqueous solution of triethylamine acidified with orthophosphoric acid (pH 3) (30:70, v/v) at 0.15 mL/min flow rate and 230 nm. Omeprazole, aspirin, and aspirin impurity retention times were 7.47, 4.40, and 5.13 min, respectively. Good linearity was achieved in the concentration ranges of 5-80, 5-85, and 3-50 µg/mL for the three mentioned components, respectively. Method B is thin-layer chromatography (TLC) where silica gel TLC F254 plates were utilized to achieve separation using ethanol:ethyl acetate (2:8, v/v) as a developing system at 240 nm. The resulted Rf values were 0.83, 0.65, and 0.23 for omeprazole, aspirin, and impurity, respectively. The concentration ranges of 0.1-3 µg/band for the three drugs showed good linearity. The proposed methods are eco-friendly and greener when compared to the already reported method (Microchemical Journal, 152, 104350). This is the first use of TLC method for the determination of the three drugs. International Council for Harmonization (ICH) guidelines were followed to ensure the validity of developed methods.


Assuntos
Aspirina/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Contaminação de Medicamentos , Omeprazol/análise , Química Verde , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Ácido Salicílico/análise
6.
Bioorg Chem ; 101: 103956, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32512267

RESUMO

Herein, novel three series of benzimidazole scaffold bearing hydrazone, 1,2,4-triazole and 1,3,4-oxadiazole moieties 1-3, 4a-j, 6a-c and 7 derivatives were designed, synthesized and evaluated for their antimicrobial activity. The structures of the prepared compounds were assigned using different spectroscopic techniques such as IR, 1H NMR, 13C NMR and elemental analyses. Compounds 3, 4a, 4e and 4f exhibited remarkable antifungal activity against C. albicans and C. neoformans var. grubii with MIC values ranging from 4 to 16 µg/mL. Furthermore, they were not cytotoxic against red blood cells and human embryonic kidney cells at concentration up to 32 µg/mL. The study was expanded to forecast the mechanism of action of the prepared compounds and determine sterol quantitation method (SQM) by spectrophotometric assay. On the other hand, compound 4e showed the highest inhibitory activity against lanosterol 14α-demethylase (CYP51) with IC50 value = 0.19 µg/mL compared to fluconazole as reference IC50 value = 0.62 µg/mL. Also, compounds 4d and 4f exhibited mild to moderate antibacterial activity. Moreover, molecular docking of the active target compound 4e in active site of lanosterol 14α-demethylase (CYP51) revealed that docking scores and binding mode are comparable to that of co-crystallized ligand confirming their antifungal activity. In silico ADME prediction investigations also forecasting the drug-like characters of these compounds.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Desenho de Fármacos , Antifúngicos/síntese química , Antifúngicos/farmacocinética , Bactérias/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Simulação por Computador , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Análise Espectral/métodos
7.
Bioorg Chem ; 82: 340-359, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30428414

RESUMO

VEGFR-2 has a pivotal role in promoting cancer angiogenesis. Herein, two series of novel indazole-based derivatives were designed, synthesized and evaluated for their in vitro inhibitory action against VEGFR-2 kinase enzyme. The second series 11a-e exhibited better potency than the first one 7a-d and 8a-f. Compounds 11b, 11c and 11e exhibited the most potent action, with IC50 of 5.4 nM, 5.6 nM and 7 nM, respectively. As a measure of cellular VEGFR-2 inhibition, compounds 11b and 11c showed strong inhibition of human umbilical vein endothelial cells (HUVEC) proliferation with 80% and 99.6% inhibition at 10 µM concentration, respectively. Attempting to interpret SAR of the synthesized compounds, and provide a basis for further optimization; a comprehensive modeling study was implemented. Molecular docking, dynamics simulation and free energy calculation of the synthesized compounds along with known VEGFR-2 inhibitors were applied. The study illustrated the effect of several factors on VEGFR-2 inhibition, such as the interaction with solvent accessible region of the enzyme, the presence of NH linker and the degree of conformational restriction. Finally, our compounds were evaluated for their in vitro anti-proliferative effect against the full NCI panel of cancer cell lines, where compounds 11a and 11c displayed mean GI% of 93 and 130%, respectively, and showed partly a better behavior than the FDA approved drug sorafenib, with respect to activity (GI50) and safety (LC50) against several cell lines. Thus, compound 11c represents a promising candidate for cancer treatment through antiangiogenic dependent and antiangiogenic independent modes of action.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Indazóis/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Caspase 3/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/metabolismo , Cinética , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Termodinâmica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Molecules ; 24(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934622

RESUMO

The quinoxaline scaffold is a promising platform for the discovery of active chemotherapeutic agents. Three series of quinoxaline derivatives were synthesized and biologically evaluated against three tumor cell lines (HCT116 human colon carcinoma, HepG2, liver hepatocellular carcinoma and MCF-7, human breast adenocarcinoma cell line), in addition to VEGFR-2 enzyme inhibition activity. Compounds VIId, VIIIa, VIIIc, VIIIe and XVa exhibited promising activity against the tested cell lines and weak activity against VEGFR-2. Compound VIIIc induced a significant disruption in the cell cycle profile and cell cycle arrest at the G2/M phase boundary. In further assays, the cytotoxic effect of the highly active compounds was determined using a normal Caucasian fibroblast-like fetal lung cell line (WI-38). Compound VIIIc could be considered as a lead compound that merits further optimization and development as an anti-cancer and an apoptotic inducing candidate against the HCT116 cell line.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Química Sintética , Desenho de Fármacos , Quinoxalinas/química , Quinoxalinas/farmacologia , Antineoplásicos/síntese química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Quinoxalinas/síntese química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
9.
Bioorg Chem ; 80: 11-23, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29864684

RESUMO

New series of thiazolo[4,5-d]pyridazin and imidazo[2',1':2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 µM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 µM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (23-25) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2',1':2,3]-thiazolo[4,5-d]pyridazine (43-54) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.


Assuntos
Antagonistas do Ácido Fólico/síntese química , Piridazinas/química , Tetra-Hidrofolato Desidrogenase/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Piridazinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Tiazóis/química
10.
Bioorg Chem ; 74: 228-237, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28865294

RESUMO

A new series of 1,3-thiazoles and thiazolo[4,5-d]pyridazine both bearing the 2-thioureido function were designed, synthesized and evaluated for their invitro DHFR inhibition and antitumor activities. Compound 26 proved to be the most active DHFR inhibitor (IC50 of 0.06µM). Compound 4, 20 and 21 showed in vitro antitumor activity against a collection of cancer cell lines. Compound 26 proved lethal to HS 578T breast cancer cell line with IC50 value of 0.8µM, inducing cell cycle arrest and apoptosis. Molecular modeling studies concluded that recognition with key amino acids Phe 31 and Arg 22 is essential for DHFR binding. The obtained model could be useful for the development of new class of DHFR inhibitors.


Assuntos
Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Piridazinas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Humanos , Modelos Moleculares , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
11.
Bioorg Chem ; 75: 368-392, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29096097

RESUMO

EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 µM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 µM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.


Assuntos
Amidas/química , Antineoplásicos/síntese química , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Quinolinas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Quinolinas/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade , Termodinâmica
12.
Arch Pharm (Weinheim) ; 349(5): 309-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27062086

RESUMO

Quinoxaline derivatives, also called benzopyrazines, are an important class of heterocyclic compounds. Quinoxalines have drawn great attention due to their wide spectrum of biological activities. They are considered as an important basis for anticancer drugs due to their potential activity as protein kinase inhibitors. In this review, we focus on the chemistry of the quinoxaline derivatives, the strategies for their synthesis, their potential activities against various tyrosine kinases, and on the structure-activity relationship studies reported to date.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinoxalinas/química , Quinoxalinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 23(15): 4989-4999, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048024

RESUMO

A series of novel 2-aminobenzothiazole derivatives bearing sulfonamide at position 6 was designed, synthesized and investigated as inhibitors of four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), the cytosolic CA I and II, and the tumor-associated isozymes CA IX and XII. Docking and binding energy studies were carried out to reveal details regarding the favorable interactions between the scaffolds of these new inhibitors and the active sites of the investigated CA isoforms. Most of the novel compounds were acting as highly potent inhibitors of the tumor-associated hCA IX and hCA XII with KIs in the nanomolar range. The ubiquitous and dominant rapid cytosolic isozyme hCA II was also inhibited with KIs ranging from 3.5 to 45.4 nM. The favorable interactions between some of the new compounds and the active site of different CA isoforms were delineated by using molecular docking which may be useful for designing compounds with high affinity and selectivity for some CAs with biomedical applications.


Assuntos
Benzotiazóis/química , Inibidores da Anidrase Carbônica/síntese química , Anidrases Carbônicas/química , Desenho de Fármacos , Sulfonamidas/química , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Benzotiazóis/metabolismo , Sítios de Ligação , Anidrase Carbônica I/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/metabolismo , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
14.
Bioorg Chem ; 56: 16-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24922538

RESUMO

In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a series of new quinoxaline-based derivatives was designed and synthesized. The target compounds were biologically evaluated for their inhibitory activity against VEGFR-2. The design of the target compounds was accomplished after a profound study of the structure activity relationship (SAR) of type-II VEGFR-2 inhibitors. Among the synthesized compounds, 1-(2-((4-methoxyphenyl)amino)-3-oxo-3,4 dihydroquinoxalin-6-yl)-3-phenylurea (VIIa) displayed the highest inhibitory activity against VEGFR-2. Molecular modeling study involving molecular docking and field alignment was implemented to interpret the variable inhibitory activity of the newly synthesized compounds.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Bioorg Chem ; 54: 21-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727279

RESUMO

A new series of 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylic acid amide and 3,5,6,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4-one derivatives were designed, synthesized, their binding and functional properties as α1-adrenoreceptors blockers were evaluated. A new validated α1-adrenoreceptor blocker pharmacophore model (hypothesis) was generated using Discovery Studio 2.5. The compare-fit study for the designed molecules with the generated hypothesis was fulfilled and several compounds showed significant high fit values. Compounds IVa-c, VIIa-d, VIIIa-c, Xa-c, XIa-d have shown blocking activity ranging from 46.73% up to 94.74% compared to 99.17% for prazosin.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/síntese química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Desenho de Fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/química , Animais , Aorta/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Músculo Liso Vascular/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 268: 116255, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401190

RESUMO

Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 µM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Aurora Quinase B , Oxindóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proliferação de Células
17.
Bioorg Med Chem ; 21(10): 2742-55, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23583031

RESUMO

Two series of peptidomimetics were designed, prepared and evaluated for their anti-HCV activity. One series possesses a C-terminal carboxylate functionality. In the other series, the electrophilic vinyl sulfonate moiety was introduced as a novel class of HCV NS3/4A protease inhibitors. In vitro based studies were then performed to evaluate the efficacies of the inhibitors using Human hepatoma cells, with the vinyl sulfonate ester (10) in particular, found to have highly potent anti-HCV activity with an EC(50) = 0.296 µM. Finally, molecular modeling studies were performed through docking of the synthesized compounds in the HCV NS3/4A protease active site to assess their binding modes with the enzyme and gain further insight into their structure-activity relationships.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Inibidores de Serina Proteinase/química , Antivirais/síntese química , Desenho de Fármacos , Hepacivirus/enzimologia , Humanos , Modelos Moleculares , Peptidomiméticos/síntese química , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade
18.
Sci Rep ; 13(1): 15554, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730790

RESUMO

Apoptosis plays a crucial role in cancer pathogenesis and drug resistance. BCL-2 family of enzymes is considered as one of the key enzymes which is involved in apoptosis. When there is disruption in the balance between anti-apoptotic and pro-apoptotic members of the BCL-2 family apoptosis is dysregulated in the affected cells. Herein, 33 novel benzothiazole-based molecules 7a-i, 8a-f, 9a-b, 12a-e, 13a-d, 14a,b, and 17a-j were designed, synthesized and tested for their BCL-2 inhibitory activity. Scaffold hopping strategy was applied in designing of the target compounds. Compounds 13c and 13d showed the highest activity with IC50 values equal to 0.471 and 0.363 µM, respectively. Molecular docking studies of the synthesized compounds showed comparable binding interactions with the lead compound. Structure activity relationship study was performed to show the effects of structural modifications on the inhibitory activities on BCL-2.


Assuntos
Antineoplásicos , Benzotiazóis , Simulação de Acoplamento Molecular , Benzotiazóis/farmacologia , Antineoplásicos/farmacologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2
19.
Bioorg Med Chem ; 20(7): 2455-78, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22386565

RESUMO

This work presents the first structure-based activity prediction model for benzothiadiazines against various genotypes of HCV NS5b polymerase (1a, 1b and 4).The model is a comprehensive workflow of structure-based field template followed by guided docking. The field template was used as a pre-filter and a tool to provide hits in good orientation and position. It was created based on detailed molecular interaction field analysis which includes Topomer CoMFA, grid independent analysis and Superstar. On the other hand, Guided docking was used as a refinement and assessment tool. It was actively directed by two scores: Moldock score as an interaction descriptor (r(2)=0.65) and a template similarity score as a measure for accurate binding-mode compliance. The docking template was based on energy-based pharmacophore analysis. The whole procedure was formulated and tweaked for both screening (ROC of AUC=0.91) and activity prediction (r(2) of 0.8) for the genotype 1a. In order to widen the model scope, linear interaction energy was used as a tool for predicting activities of other genotypes based on the docked ligand poses while mutation binding energy was used to investigate the effect of each amino acid mutation in genotype 4. The model was applied for structure-based fragment hopping by screening a library designed by reaction enumeration. A top scoring hit was used to generate a focused library such that it has lower TPSA than the original class ligands and thus better pharmacokinetic properties. After that, experimental validation was carried out by the synthesis of this library and its biological evaluation which yielded compounds that exhibit EC(50) ranging from 1.86 to 23 µM.


Assuntos
Benzotiadiazinas/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Benzotiadiazinas/síntese química , Benzotiadiazinas/farmacologia , Sítios de Ligação , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Genótipo , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Relação Quantitativa Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
Bioorg Med Chem ; 17(10): 3739-46, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19403313

RESUMO

A series of new 3-mercapto-2-methyl-propanoyl-pyrrolidine derivatives (V, VIa-e) were designed. A new validated ACE inhibitors pharmacophore model (hypothesis) was generated for the first time in this research from the biologically active (frozen) conformation of Lisinopril-Human ACE complex that was downloaded from PDB, using stepwise technique of CATALYST modules. The molecular modeling compare-fit study of the designed molecules (V, VIa-e), with such ACE inhibitors hypothesis was fulfilled, and several compounds showed significant high simulation fit values. The compounds with high fit values were synthesized and biologically evaluated in vivo as hypotensive agents. It appears that the in vivo hypotensive activity of compounds V, VIa, VIb, and VIe was consistent with their molecular modeling results, and compound VIe showed the highest activity in comparison to Captopril.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Anti-Hipertensivos/química , Propionatos/química , Pirrolidinas/química , Inibidores da Enzima Conversora de Angiotensina/síntese química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacologia , Catálise , Gatos , Simulação por Computador , Bases de Dados de Proteínas , Desenho de Fármacos , Modelos Químicos , Modelos Moleculares , Propionatos/síntese química , Propionatos/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA