Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 62(2): 1304-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37594641

RESUMO

The kidney lost a lot of protein in the urine when you have nephrotic syndrome (NS). Clinical manifestations mostly common in NS include massive proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Idiopathic nephrotic syndrome is currently classified into steroid-dependent (SDNS) and steroid-resistant (SRNS) based on the initial response to corticosteroid therapy at presentation. Several reports examined the association of the MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs741301 G > A) variant as risk factors for Nephrotic Syndrome. This study aimed to determine the potential effect of the MYH9 gene (rs3752462, C > T) and ELMO1 gene (rs741301) variant on the risk of (NS) among Egyptian Children. This study included two hundred participants involving 100 nephrotic syndrome (NS) cases and 100 healthy controls free from nephrotic syndrome (NS). The MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs G > A741301) variant were analyzed by ARMS-PCR technique. Nephrotic syndrome cases include 74% SRNS and 26% SDNS. Higher frequencies of the heterozygous carrier (CT) and homozygous variant (TT) genotypes of the MYH9 (rs3752462, C > T) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the MYH9 (rs3752462, C > T variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.85, p < 0.001), dominant (OR 3.97, p < 0.001) models, and the recessive model OR 5.94, p < 0.001). Higher frequencies of the heterozygous carrier (GA) and homozygous variant (AA) genotypes of ELMO1gene (rs G > A741301) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the ELMO1 (rs G > A741301) variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.15, p < 0.001), dominant models (OR 2.8, p < 0.001), and the recessive model (OR 4.17, p = 0.001). Both MYH9 and ELMO1 gene variants are significantly different in NS in comparison with the control group (p < 0.001). The MYH9 gene (rs3752462, C > T) and ELMO1gene (rs G > A741301) variants were considered independent risk factors for NS among Egyptian Children.

2.
Carcinogenesis ; 14(11): 2271-6, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8242854

RESUMO

When irradiated at 360 nm, furocoumarins with a hydroperoxide group in a side chain efficiently give rise to a type of DNA damage that can best be explained by a photo-induced generation of hydroxyl radicals from the excited photosensitizers. The observed DNA damage profiles, i.e. the ratios of single-strand breaks, sites of base loss (AP sites) and base modifications sensitive to formamidopyrimidine--DNA glycosylase (FPG protein) and endonuclease III, are similar to the DNA damage profile produced by hydroxyl radicals generated by ionizing radiation or by xanthine and xanthine oxidase in the presence of Fe(III)--EDTA. No such damage is observed with the corresponding furocoumarin alcohols or in the absence of near-UV radiation. The damage caused by the photo-excited hydroperoxides is not influenced by superoxide dismutase (SOD) or catalase or by D2O as solvent. The presence of t-butanol, however, reduces both the formation of single-strand breaks and of base modifications sensitive to FPG protein. The cytotoxicity caused by one of the hydroperoxides in L5178Y mouse lymphoma cells is found to be dependent on the near-UV irradiation and to be much higher than that of the corresponding alcohol. Therefore the new type of photo-induced damage occurs inside cells. Intercalating photosensitizers with an attached hydroperoxide group might represent a novel and versatile class of DNA damaging agents, e.g. for phototherapy.


Assuntos
Dano ao DNA , DNA Viral/efeitos da radiação , Furocumarinas/farmacologia , Raios Ultravioleta , Animais , Bacteriófagos , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , DNA-Formamidopirimidina Glicosilase , Desoxirribonuclease (Dímero de Pirimidina) , Endodesoxirribonucleases/metabolismo , Furocumarinas/toxicidade , Radical Hidroxila , Cinética , Camundongos , N-Glicosil Hidrolases/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA