Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(8): 692, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941108

RESUMO

Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.


Assuntos
Caspases , Melanoma , Apoptose , Caspases/metabolismo , Via de Sinalização Hippo , Humanos , Melanoma/genética , Melanoma/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteômica , Proteínas Proto-Oncogênicas B-raf/metabolismo , Serina-Treonina Quinase 3/metabolismo
2.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038253

RESUMO

The RAS-RAF-MEK-ERK pathway is hyperactivated in most malignant melanomas, and mutations in BRAF or NRAS account for most of these cases. BRAF inhibitors (BRAFi) are highly efficient for treating patients with BRAFV600E mutations, but tumours frequently acquire resistance within a few months. Multiple resistance mechanisms have been identified, due to mutations or network adaptations that revive ERK signalling. We have previously shown that RAF proteins inhibit the MST2 proapoptotic pathway in a kinase-independent fashion. Here, we have investigated the role of the MST2 pathway in mediating resistance to BRAFi. We show that the BRAFV600E mutant protein, but not the wild-type BRAF protein, binds to MST2 inhibiting its proapoptotic signalling. Down-regulation of MST2 reduces BRAFi-induced apoptosis. In BRAFi-resistant cell lines, MST2 pathway proteins are down-regulated by ubiquitination and subsequent proteasomal degradation rendering cells refractory to MST2 pathway-induced apoptosis. Restoration of apoptosis can be achieved by increasing MST2 pathway protein expression using proteasome inhibitors. In summary, we show that the MST2 pathway plays a role in the acquisition of BRAFi resistance in melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética
3.
Front Med (Lausanne) ; 9: 903856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203751

RESUMO

Introduction: Increased de novo lipogenesis (DNL) is one of the key factors contributing to fat accumulation and non-alcoholic fatty liver disease (NAFLD). Among the critical transcription factors (TFs) regulating DNL is mTOR and its downstream lipogenic TF, SREBP1c. In recent years, it has been established that non-coding RNAs (ncRNAs) play role in both biological processes and disease pathogenesis. Our group has previously characterized microRNAs that can target and regulate the expression of both mTOR and SREBP1c. Accordingly, this study aimed to broaden our understanding of the role of ncRNAs in regulating the mTOR/SREBP1c axis to elucidate the role of the non-coding transcriptome in DNL and lipid droplet (LD) formation. Hence, short ncRNA, miR-615-5p, and long non-coding RNA (lncRNA), H19, were chosen as they were previously proven to target mTOR by our group and in the published literature, respectively. Methodology: Huh-7 cells were treated with 800 µM oleic acid (OA) to promote LD formation. Transfection of miR-615-5p mimics or H19 over-expression vectors was performed, followed by the measurement of their downstream targets, mTOR and SREBP, on the mRNA level by quantitative real-time PCR (qRT-PCR), and on the protein level by Western blot. To determine the functional impact of miR-615-5p and H19 on LD formation and triglyceride (TG) accumulation, post-transfection LDs were stained, imaged, and characterized, and TGs were extracted and quantified. Results: miR-615-5p was able to reduce mTOR and SREBP1c significantly on both the mRNA and protein levels compared to control cells, while H19 caused a reduction of both targets on the protein level only. Both miR-615-5p and H19 were able to significantly reduce the LD count and total area, as well as TG levels compared to control cells. Conclusion: To conclude, this study shows, for the first time, the impact of miR-615-5p and H19 on the mTOR/SREBP1c axis, and thus, their functional impact on LDs and TG accumulation. These findings might pave the way for using ncRNAs as potential therapeutic targets in the management of fatty liver.

4.
Genes (Basel) ; 12(4)2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920182

RESUMO

Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Quinases raf/metabolismo , Proteínas ras/antagonistas & inibidores , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Quinases raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA