Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 16: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695725

RESUMO

BACKGROUND: Within-species skull shape variation of marsupial mammals is widely considered low and strongly size-dependent (allometric), possibly due to developmental constraints arising from the altricial birth of marsupials. However, species whose skulls are impacted by strong muscular stresses - particularly those produced through mastication of tough food items - may not display such intrinsic patterns very clearly because of the known plastic response of bone to muscle activity of the individual. In such cases, allometry may not dominate within-species shape variation, even if it is a driver of evolutionary shape divergence; ordination of shape in a geometric morphometric context through principal component analysis (PCA) should reveal main variation in areas under masticatory stress (incisor region/zygomatic arches/mandibular ramus); but this main variation should emerge from high individual variability and thus have low eigenvalues. RESULTS: We assessed the evidence for high individual variation through 3D geometric morphometric shape analysis of crania and mandibles of three species of grazing-specialized wombats, whose diet of tough grasses puts considerable strain on their masticatory system. As expected, we found little allometry and low Principal Component 1 (PC1) eigenvalues within crania and mandibles of all three species. Also as expected, the main variation was in the muzzle, zygomatic arches, and masticatory muscle attachments of the mandibular ramus. We then implemented a new test to ask if the landmark variation reflected on PC1 was reflected in individuals with opposite PC1 scores and with opposite shapes in Procrustes space. This showed that correspondence between individual and ordinated shape variation was limited, indicating high levels of individual variability in the masticatory apparatus. DISCUSSION: Our results are inconsistent with hypotheses that skull shape variation within marsupial species reflects a constraint pattern. Rather, they support suggestions that individual plasticity can be an important determinant of within-species shape variation in marsupials (and possibly other mammals) with high masticatory stresses, making it difficult to understand the degree to which intrinsic constraints act on shape variation at the within-species level. We conclude that studies that link micro- and macroevolutionary patterns of shape variation might benefit from a focus on species with low-impact mastication, such as carnivorous or frugivorous species.

3.
R Soc Open Sci ; 9(11): 220438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36405636

RESUMO

Biomechanical and clinical studies have yet to converge on the optimal fixation technique for angle fractures, one of the most common and controversial fractures in terms of fixation approach. Prior pre-clinical studies have used a variety of animal models and shown abnormal strain environments exacerbated by less rigid (single-plate) Champy fixation and chewing on the side opposite the fracture (contralateral chewing). However, morphological differences between species warrant further investigation to ensure that these findings are translational. Here we present the first study to use realistically loaded finite-element models to compare the biomechanical behaviour of human and macaque mandibles pre- and post-fracture and fixation. Our results reveal only small differences in deformation and strain regimes between human and macaque mandibles. In the human model, more rigid biplanar fixation better approximated physiologically healthy global bone strains and moments around the mandible, and also resulted in less interfragmentary strain than less rigid Champy fixation. Contralateral chewing exacerbated deviations in strain, moments and interfragmentary strain, especially under Champy fixation. Our pre- and post-fracture fixation findings are congruent with those from macaques, confirming that rhesus macaques are excellent animal models for biomedical research into mandibular fixation. Furthermore, these findings strengthen the case for rigid biplanar fixation over less rigid one-plate fixation in the treatment of isolated mandibular angle fractures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA