Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Nutr Food Res ; 62(14): e1800148, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29756679

RESUMO

SCOPE: Shellfish allergy is an increasing global health priority, frequently affecting adults. Molluscs are an important shellfish group causing food allergy but knowledge of their allergens and cross-reactivity is limited. Optimal diagnosis of mollusc allergy enabling accurate advice on food avoidance is difficult. Allergens of four frequently ingested Asia-Pacific molluscs are characterized: Sydney rock oyster (Saccostrea glomerata), blue mussel (Mytilus edulis), saucer scallop (Amusium balloti), and southern calamari (Sepioteuthis australis), examining cross-reactivity between species and with blue swimmer crab tropomyosin, Por p 1. METHODS AND RESULTS: IgE ELISA showed that cooking increased IgE reactivity of mollusc extracts and basophil activation confirmed biologically relevant IgE reactivity. Immunoblotting demonstrated strong IgE reactivity of several proteins including one corresponding to heat-stable tropomyosin in all species (37-40 kDa). IgE-reactive Sydney rock oyster proteins were identified by mass spectrometry, and the novel major oyster tropomyosin allergen was cloned, sequenced, and designated Sac g 1 by the IUIS. Oyster extracts showed highest IgE cross-reactivity with other molluscs, while mussel cross-reactivity was weakest. Inhibition immunoblotting demonstrated high cross-reactivity between tropomyosins of mollusc and crustacean species. CONCLUSION: These findings inform novel approaches for reliable diagnosis and improved management of mollusc allergy.

2.
PLoS One ; 12(3): e0173549, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273149

RESUMO

Crustacean allergy is a major cause of food-induced anaphylaxis. We showed previously that heating increases IgE reactivity of crustacean allergens. Here we investigate the effects of thermal processing of crustacean extracts on cellular immune reactivity. Raw and cooked black tiger prawn, banana prawn, mud crab and blue swimmer crab extracts were prepared and IgE reactivity assessed by ELISA. Mass spectrometry revealed a mix of several allergens in the raw mud crab extract but predominant heat-stable tropomyosin in the cooked extract. PBMC from crustacean-allergic and non-atopic control subjects were cultured with the crab and prawn extracts and proliferation of lymphocyte subsets was analysed by CFSE labelling and flow cytometry. Effector responses were assessed by intracellular IL-4 and IFN-γ, and regulatory T (CD4+CD25+CD127loFoxp3+) cell proportions in cultures were also compared by flow cytometry. For each crustacean species, the cooked extract had greater IgE reactivity than the raw (mud crab p<0.05, other species p<0.01). In contrast, there was a trend for lower PBMC proliferative responses to cooked compared with raw extracts. In crustacean-stimulated PBMC cultures, dividing CD4+ and CD56+ lymphocytes showed higher IL-4+/IFN-γ+ ratios for crustacean-allergic subjects than for non-atopics (p<0.01), but there was no significant difference between raw and cooked extracts. The percentage IL-4+ of dividing CD4+ cells correlated with total and allergen-specific IgE levels (prawns p<0.01, crabs p<0.05). Regulatory T cell proportions were lower in cultures stimulated with cooked compared with raw extracts (mud crab p<0.001, banana prawn p<0.05). In conclusion, cooking did not substantially alter overall T cell proliferative or cytokine reactivity of crustacean extracts, but decreased induction of Tregs. In contrast, IgE reactivity of cooked extracts was increased markedly. These novel findings have important implications for improved diagnostics, managing crustacean allergy and development of future therapeutics. Assessment of individual allergen T cell reactivity is required.


Assuntos
Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Ativação Linfocitária/imunologia , Frutos do Mar/efeitos adversos , Subpopulações de Linfócitos T/imunologia , Adulto , Biomarcadores , Estudos de Casos e Controles , Citocinas/metabolismo , Feminino , Hipersensibilidade Alimentar/metabolismo , Humanos , Imunoglobulina E/sangue , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Desnaturação Proteica , Subpopulações de Linfócitos T/metabolismo , Adulto Jovem
3.
PLoS One ; 8(6): e67487, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840718

RESUMO

Shellfish allergy is a major cause of food-induced anaphylaxis, but the allergens are not well characterized. This study examined the effects of heating on blue swimmer crab (Portunus pelagicus) allergens in comparison with those of black tiger prawn (Penaeus monodon) by testing reactivity with shellfish-allergic subjects' serum IgE. Cooked extracts of both species showed markedly increased IgE reactivity by ELISA and immunoblotting, and clinical relevance of IgE reactivity was confirmed by basophil activation tests. Inhibition IgE ELISA and immunoblotting demonstrated cross-reactivity between the crab and prawn extracts, predominantly due to tropomyosin, but crab-specific IgE-reactivity was also observed. The major blue swimmer crab allergen tropomyosin, Por p 1, was cloned and sequenced, showing strong homology with tropomyosin of other crustacean species but also sequence variation within known and predicted linear IgE epitopes. These findings will advance more reliable diagnosis and management of potentially severe food allergy due to crustaceans.


Assuntos
Alérgenos/imunologia , Reações Cruzadas , Crustáceos/imunologia , Temperatura Alta , Imunoglobulina E/imunologia , Tropomiosina/imunologia , Adolescente , Adulto , Animais , Western Blotting , Crustáceos/classificação , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA