Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491969

RESUMO

In this work, we improved a previous model used for the prediction of proteomes as new B-cell epitopes in vaccine design. The predicted epitope activity of a queried peptide is based on its sequence, a known reference epitope sequence under specific experimental conditions. The peptide sequences were transformed into molecular descriptors of sequence recurrence networks and were mixed under experimental conditions. The new models were generated using 709,100 instances of pair descriptors for query and reference peptide sequences. Using perturbations of the initial descriptors under sequence or assay conditions, 10 transformed features were used as inputs for seven Machine Learning methods. The best model was obtained with random forest classifiers with an Area Under the Receiver Operating Characteristics (AUROC) of 0.981 ± 0.0005 for the external validation series (five-fold cross-validation). The database included information about 83,683 peptides sequences, 1448 epitope organisms, 323 host organisms, 15 types of in vivo processes, 28 experimental techniques, and 505 adjuvant additives. The current model could improve the in silico predictions of epitopes for vaccine design. The script and results are available as a free repository.


Assuntos
Mapeamento de Epitopos , Aprendizado de Máquina , Peptídeos/imunologia , Sequência de Aminoácidos , Humanos , Peptídeos/química , Curva ROC , Relação Estrutura-Atividade
2.
J Virol ; 88(5): 2452-60, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335315

RESUMO

Human astroviruses (HAstV) are a frequent cause of gastroenteritis in young children and immunocompromised patients. To understand the early steps of HAstV infection in the highly permissive Caco-2 cell line, the binding and entry processes of the virus were characterized. The half-time of virus binding to the cell surface was about 10 min, while virus decapsidation took around 130 min. Drugs affecting clathrin-mediated endocytosis, endosome acidification, and actin filament polymerization, as well as those that reduce the presence of cholesterol in the cell membrane, decreased the infectivity of the virus. The infection was also reduced by silencing the expression of the clathrin heavy chain (CHC) by RNA interference or by overexpression of dominant-negative mutants of dynamin 2 and Eps15. Furthermore, the entry of HAstV apparently depends on the maturation of endosomes, since the infection was reduced by silencing the expression of Rab7, a small GTPase involved in the early- to late-endosome maturation. Altogether, our results suggest that HAstV enters Caco-2 cells using a clathrin-dependent pathway and reaches late endosomes to enter cells. Here, we have characterized the mechanism used by human astroviruses, important agents of gastroenteritis in children, to gain entry into their host cells. Using a combination of biochemical and genetic tools, we found that these viruses enter Caco-2 cells using a clathrin-dependent endocytic pathway, where they most likely need to travel to late endosomes to reach the cytoplasm and begin their replication cycle.


Assuntos
Mamastrovirus/fisiologia , Internalização do Vírus , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antivirais/farmacologia , Infecções por Astroviridae/genética , Infecções por Astroviridae/metabolismo , Infecções por Astroviridae/virologia , Linhagem Celular , Clatrina/genética , Clatrina/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Inativação Gênica , Humanos , Mamastrovirus/efeitos dos fármacos , Mutação , Ligação Viral , Liberação de Vírus , Replicação Viral/efeitos dos fármacos , Desenvelopamento do Vírus , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
3.
J Virol Methods ; 179(2): 295-302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22115787

RESUMO

A reverse genetics system for human astrovirus (HAstV) was established previously; however, it has not been exploited mainly because cells used for virus packaging are not permissive, requiring several rounds of replication to obtain acceptable infectious virus. In this work, in the search for alternative permissive cell lines to be used as packaging cells, Hek-293 and Huh7.5.1 were tested. Given that HAstV infection in Hek-293 showed differences with that in Caco-2, the gold standard for HAstV growth but scarcely transfectable, and it was more similar to that observed in the hepatoma Huh7.5.1 cell line, these last cells were further used to transfect viral RNA. Virus titers near to 10(8) infectious particles per ml (ffu/ml) were obtained at 16-20 h after transfection with RNA from infected cells. However, virus titers close to 10(6) ffu/ml were obtained by using in vitro transcribed RNA from a cDNA HAstV-1 clone. In contrast, virus recovery in BHK-21, reported previously as the packaging cells, from this RNA was of about 10(4) ffu/ml, two logarithms less than in Huh7.5.1. Apparently, the 5'-end modification of the viral RNA determined its specific infectivity, since virus recovery was abolished when the total RNA was treated with proteinase-K, probably by removing a protein-linked genome protein, but it increased when capping of the in vitro transcribed RNA was more efficient. Thus, an alternative and more efficient reverse genetics system for HAstV was established by using Huh7.5.1 cells.


Assuntos
DNA Complementar/genética , Mamastrovirus/crescimento & desenvolvimento , Mamastrovirus/isolamento & purificação , RNA Viral/genética , Genética Reversa/métodos , Transfecção , Virologia/métodos , Linhagem Celular , DNA Complementar/isolamento & purificação , Humanos , Mamastrovirus/genética , RNA Viral/isolamento & purificação , Carga Viral , Montagem de Vírus , Cultura de Vírus/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA