RESUMO
Formation and extinction of thermal stratifications impact the reservoir ecosystems and have been closely influenced by meteorological and hydrological factors. However, quantifying the relative importance of these crucial environmental factors and mechanisms in reservoir regions characterized by various depths remain comparatively uninvestigated. Tianbao Reservoir is a typical monomictic warm and drinking water source reservoir in Southwest China. This study supplemented field observations with a three-dimensional numerical simulation model to quantitatively analyze mixing and turnover events. Air temperature and wind were two important meteorological factors resulting in hydrodynamics during stratification and mixing processes. Air temperature led to variations in stratification strength and wind-induced fluctuations of thermocline depth. A 10% rise in air temperature increased stratification strength by 18%, and a 3 m/s rise in wind speed induced the deepening of the thermocline by 2.09 m. Two hydrodynamics involved penetrative convection caused by temperature plummets and wind-induced mixing during winter turnover events were identified. Penetrative convection was the main driving force, and wind shear mixed the upper 21% of the mixed layer, which was contributed by convection. Response of water temperature to air temperature in shallow regions was faster (58 d), and the mixing depth caused by the wind was smaller than that in deep regions. Research on physical processes during stratification and mixing processes can provide support for further study on water quality deterioration distributions.
Assuntos
Ecossistema , Qualidade da Água , Estações do Ano , Temperatura , Vento , China , Monitoramento AmbientalRESUMO
PREMISE: Plants rely on pools of internal nonstructural carbohydrates (NSCs: soluble sugars plus starch) to support metabolism, growth, and regrowth of tissues damaged from disturbance such as foliage herbivory. However, impacts of foliage herbivory on the quantity and composition of NSC pools in long-lived woody plants are currently unclear. We implemented a controlled defoliation experiment on mature Tamarix spp.-a dominant riparian woody shrub/tree that has evolved with intense herbivory pressure-to test two interrelated hypotheses: (1) Repeated defoliation disproportionately impacts aboveground versus belowground NSC storage. (2) Defoliation disproportionately impacts starch versus soluble sugar storage. METHODS: Hypotheses were tested by transplanting six Tamarix seedlings into each of eight cylinder mesocosms (2 m diameter, 1 m in depth). After 2.5 years, plants in four of the eight mesocosms were mechanically defoliated repeatedly over a single growing season, and all plants were harvested in the following spring. RESULTS: Defoliation had no impact on either above- or belowground soluble sugar pools. However, starch in defoliated plants dropped to 55% and 26% in stems and roots, respectively, relative to control plants, resulting in an over 2-fold higher soluble sugar to starch ratio in defoliated plants. CONCLUSIONS: The results suggest that defoliation occurring over a single growing season does not impact immediate plant functions such as osmoregulation, but depleted starch could limit future fitness, particularly where defoliation occurs over multiple years. These results improve our understanding of how woody plants cope with episodic defoliation caused by foliage herbivory and other disturbances.
Assuntos
Tamaricaceae , Folhas de Planta , Amido , Açúcares , ÁrvoresRESUMO
The rational eutrophication management largely depends on the knowledge of the dynamics in the dissolved inorganic nutrients especially nitrogen forms which trigger exponential primary productivity in eutrophic systems. The present study investigated the phytoplankton interactions with the dissolved N forms, nitrate (NO3) and ammonium (NH4) in a sub-tropical Yangtze River tributary, China vulnerable to multiple anthropogenic stressors following the impoundment of the largest hydraulic structure, the Three Gorges Dam. Results indicated strong NO3 inhibition by the low NH4 pool exerting toxic effects on the major phytoplankton groups, particularly the Bacilliariophyta (relative abundance < 1%) while significant Cyanophyta proliferation prevailed (relative abundance ≥ 90%). Strong N limitation exacerbated by NH4 deficit and P replete condition characterizes the summer bloom in the tributary. The biomass attenuation kinetics revealed significantly fast NH4 metabolism, half-life (t1/2= 1.4 d, K = 0.00750 ± 0.004 d-1) as the first-order rate adequately fitted into the experimental data although, the second-order rate also demonstrated considerable goodness of fit. The growth responses induced by the Si enrichment potentially suggested possible secondary limitation by Si with the likelihood of intensification should the ecosystem phytoplankton community dominance shifts from Cyanophyta to the Bacilliariophyta. The response of P enrichment on growth was attributed to luxury consumption rather than limitation as responses only became significant towards the end of the study. The study, therefore, presents the first report of biomass ageing rate worthy of incorporation into the recent bloom management protocol for the development of predictive ecosystem dynamics.
Assuntos
Compostos de Amônio/análise , Fitoplâncton , China , Ecossistema , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Estações do AnoRESUMO
The present work describes the optimization and validation of a highly selective and sensitive analytical method using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE LC-MS/MS) for the determination of some frequently prescribed pharmaceuticals in urban wastewater received and treated by Sharjah sewage treatment plant (STP). The extraction efficiency of different SPE cartridges was tested and the simultaneous extraction of pharmaceuticals was successfully accomplished using hydrophilic-lipophilic-balanced reversed phase Waters® Oasis HLB cartridge (200 mg/ 6 mL) at pH 3. The analytes were separated on an Aquity BEH C18 column (1.7 µm, 2.1 mm × 150 mm) using gradient elution and mass spectrometric analysis were performed in multiple reactions monitoring (MRM) selecting two precursor ions to produce ion transition for each pharmaceutical using positive electrospray ionization (+ESI) mode. The correlation coefficient values in the linear calibration plot for each target compound exceeded 0.99 and the recovery percentages of the investigated pharmaceuticals were more than 84%. Limit of detection (LOD) varied between 0.1â»1.5 ng/L and limit of quantification (LOQ) was 0.3â»5 ng/L for all analytes. The precision of the method was calculated as the relative standard deviation (RSD%) of replicate measurements and was found to be in the ranges of 2.2% to 7.7% and 2.2% to 8.6% for inter and intra-day analysis, respectively. All of the obtained validation parameters satisfied the requirements and guidelines of analytical method validation.
Assuntos
Preparações Farmacêuticas/isolamento & purificação , Extração em Fase Sólida/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Cromatografia Líquida/métodos , Limite de Detecção , Estrutura Molecular , Preparações Farmacêuticas/química , Esgotos/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos , Emirados Árabes Unidos , Reforma Urbana , Poluentes Químicos da Água/químicaRESUMO
Three common polyphenol compounds Gallic Acid (GA), Pyrogallic Acid (PA) and Catechol (CA) are known to have allelochemical-exhibiting inhibitory effects on the growth of the cyanobacterium Microcystis aeruginosa (M. aeruginosa). Metabolism and antioxidant responses in M. aeruginosa were investigated to elucidate the mechanism by which the three polyphenols inhibit algal growth. The inhibition effects of polyphenols were in the order of CA > PA > GA. The GA and CA exposures increased protein contents, superoxide dismutase (SOD) activity, catalase (CAT) activity and soluble sugar, especially for exposure to GA of 25 mg L(-1). Soluble sugar content increased significantly especially when exposed to CA for 72 h. When exposed to PA, protein content, and SOD and CAT activities initially increased but over longer treatment time the activities decreased, in contrast to sugar content. Our results suggest that PA exposure for longer periods of time may inhibit catabolism action, while CA exposure could induce more oxide stress than GA or PA. The overall study showed that polyphenol-induced oxidative damage might be responsible for polyphenol inhibition on M. aeruginosa growth. The increases in cellular antioxidant enzymes and soluble sugar may have been to counteract the oxidative stress.
Assuntos
Antioxidantes/metabolismo , Metabolismo dos Carboidratos , Microcystis/efeitos dos fármacos , Fenóis/farmacologia , Proteínas/metabolismo , Catalase/metabolismo , Catecóis/farmacologia , Ácido Gálico/farmacologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Pirogalol/farmacologia , Superóxido Dismutase/metabolismoRESUMO
Urban drainage system is an important channel for terrigenous microplastics (<5 mm in size) to migrate to urban water bodies, especially the input load caused by overflow pollution in wet weather. Investigating how they transport and discharge is essential to better understand the occurrence and variability of microplastics in different water ecosystems. This study evaluated the abundance and distribution characteristics of microplastics in the drainage systems of typical coastal cities in China. The impacts of meteorological conditions and land use were explored. In particular, the prominent contribution of drainage sewer overflow pollution during storm events were investigated. The results showed that the microplastics abundance in daily sewage discharge from different drainage plots ranged between 13.6 and 30.8 items/L, with fibers as the dominant type of microplastics. Sewer overflow discharge can greatly aggravate microplastic abundance to 83.1 ± 40.2 items/L. Road runoff and sewer sediment scouring were the main pollution sources. Systematic estimates based on detailed data showed that the average microplastics emitted per capita per day in household wastewater was 3461.5 items. A quantitative estimation method was proposed to show that the annual emissions load of microplastics via urban drainage system in this research area was 5.83×1010 items/km2, of which the proportion of emissions in wet weather accounted for about 60%. This research provides the first full-process of assessment and source apportionment of the microplastic distribution characteristics in old drainage system. The occurrence of storm events is an important marker of increased microplastic abundance in urban rivers, with a view to urgent need for interception of surface runoff and purification of sewer overflow pollution.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental , China , ÁguaRESUMO
Effects of artemisinin (derived from Artemisia annua) on the photosynthetic activity of Microcystis aeruginosa was investigated by using chlorophyll a (Chl a) fluorescence transient O-J-I-P and JIP-test after exposure to elevated artemisinin concentration. High artemisinin concentration resulted in a significant suppression in photosynthesis and respiration. Results showed that the OJIP curves flattened and the maximal fluorescence yield reached at the J step under artemisinin stress. The decreased values of the energy needed for the RCs' closure (Sm) and the number of oxidation and reduction (N) suggested that the reduction times of primary bound plastoquinone (Q(A)) was also decreased. The absorption flux (ABS/RC) per photosystem II (PSII) reaction center and the electron transport flux (ET(0)/RC) decreased with increasing artemisinin concentration. Excess artemisinin had little effect on the trapping flux (TR(0)/RC). The results showed that the decrease of photosynthesis in exposure to excess artemisinin may be a result of the inactivation of PSII reaction centers and the inhibition of electron transport in the acceptor side.
Assuntos
Anti-Infecciosos/toxicidade , Artemisininas/toxicidade , Clorofila/metabolismo , Microcystis/fisiologia , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
Roughness is an important parameter in hydrodynamic and water quality modelling; it has direct effects on bottom shear stress which relied on sediment and vegetation. The varied roughness caused by spatial heterogeneity of sediment and vegetation may lead to uncertain simulation results. To investigate the effect of roughness uncertainty on the performance of hydrodynamic water quality models, a typical large shallow lake in China (Lake Taihu) was divided into eight areas for illustrating the effect of spatial variation of roughness on hydrodynamics and water quality. Total nitrogen (TN) was selected as the variable to calculate the uncertainty interval, and sensitive positions greatly affected by roughness as well as the appropriate range of roughness were explored by means of regional sensitive analysis (RSA). The results showed that roughness had the most significant effect on the bottom velocity. The uncertainty for water quality caused by roughness presented a striking spatial difference; the uncertainty interval for TN could be up to 1.3 mg/L. The posterior distribution of roughness was given to further narrowed the range of roughness, and the updated roughness range manifested that roughness value should be set higher in the area with thick sediment and abundant vegetation. It is of utmost importance to consider the comprehensive effects of sediment and vegetation in the determination of roughness. For certain lake areas with great water quality simulation error, the error could be effectively reduced by setting spatial distributed roughness. The optimization scheme was provided for the reasonable determination of roughness, so that the dynamic characteristic at the sediment-water interface could be represented synthetically. In this paper, the uncertainty and sensitivity of roughness in hydrodynamic water quality model are analyzed to provide reference for parameter setting of large shallow water lake model. For large scale lakes, parameters need to be modified according to the actual condition due to the spatial difference of friction coefficient at the bottom.
Assuntos
Hidrodinâmica , Qualidade da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Fósforo/análise , IncertezaRESUMO
Increased water use associated with rapid growth in the Las Vegas Valley has inadvertently led to the creation of unique wetland systems in Southern Nevada with an abundance of biological diversity. Constructed and naturally created wetlands in the Las Vegas Valley watershed were studied to characterize and understand their potential role for improving ecosystem services (i.e., water purification). Nutrient and metal removal was assessed at four sites including a natural urban runoff wetland, a constructed urban runoff wetland, a constructed wastewater wetland, and a natural urban runoff/wastewater wetland. Plant nutrient uptake was dependent on ambient nutrient concentrations in water and sediments of specific wetlands, irrespective of the type of plants present. Phosphorus was mostly concentrated in below-ground plant parts whereas nitrogen was concentrated in above-ground parts. As for metalloids, bulrushes were more efficient than cattails at taking up arsenic and selenium. Averaging all the wetland sites and plant species, total nitrogen, phosphorus, arsenic and selenium removal was 924.2, 61.5, 0.30, and 0.38 kg/ha/year, respectively. Our findings suggest that natural and created wetland systems can improve water quality in the Las Vegas Valley watershed for some common pollutants, however, other measures are still needed to improve water quality below regulatory thresholds.
Assuntos
Recuperação e Remediação Ambiental/métodos , Metais/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Arsênio/análise , Sedimentos Geológicos/química , Nevada , Nitrogênio/análise , Fósforo/análise , Selênio/análise , Eliminação de Resíduos Líquidos , Poluição Química da Água/estatística & dados numéricosRESUMO
Wind-induced sediment resuspension frequently occurs in Lake Taihu, a typical large shallow lake in China. Internal nutrients release accompanied by sediment resuspension is supposed to sustain the eutrophic status and algal boom persistence. In this study, high-frequency and synchronous in situ observation of the wind field, currents, waves, suspended sediments, and nutrients were collected to understand the dynamic behaviors of sediment and nutrients under multiple natural disturbances in Meiliang Bay, Lake Taihu. Results suggest that both wind speed and wind fetch length could effectively activate the sediment layer and trigger particles entrainment into the overlying water. Wind speed of 4 m/s with long wind fetch (between east and southeast wind direction) was the critical value for sediment resuspension. Furthermore, wind-induced wave shear stress and stochastic nature of turbulence at the water-sediment interface were the driving force for sediment resuspension. Specifically, incipient motion of sediment occurred when shear stress was ranging from 0.02 to 0.07 N/m2. Wind-induced sediment resuspension had significantly contributed to nutrients release of particulate N and P, whereas dissolved nutrients concentration was less affected. Internal nutrients release by wind could maintain a significant potential for obstinate eutrophication and algal bloom. This study has revealed the dynamic response of nutrients release to sediment resuspension and wind-induced hydrodynamics. Therefore, a better understanding of the mechanism of internal nutrients release will benefit the effective and sustainable management of the shallow and wind-exposed lakes.
RESUMO
The integration of first and second order kinetic model in parameter estimation for the degradation pattern of total petroleum hydrocarbon (TPH) in spent lubricating petroleum oil (SLPO) over a four-month period was the subject of the present investigation. Study design considered four treatment microcosms notably; sewage sludge (SB), monitored natural recovery (MNR), surfactant (SA) and control (SO). The rate of TPH degradation using sewage sludge as amendment material depicted effective TPH removal within ten weeks. A maximum allowable concentration of residual TPH (4300 mgâ kg-1) was obtained through an amendment with sewage sludge. Degradation constant (k) produced by both first and second order rates significantly demonstrated the performance of sewage sludge biomass over the other three treatments applied, however, experimental data adequately fitted into the first order kinetics (k = 0.27 d-1, t½ = 3.0 d). TPH removal efficiency of sewage sludge and detergent were 96.0% and 81.0% respectively. The use of sewage sludge biomass significantly (p < .05) improved soil biological characteristics and produced optimum dehydrogenase activity (DHA ≥ 8.8 TPFg-1 d), germination index (%IG ≥ 88%), and chlorophyll content (chl ≥ 100 µgâ cm-2), thus, recommended for field scale application in soil hydrocarbon pollution remediation.
Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Cinética , Esgotos , Solo , Microbiologia do SoloRESUMO
The impact on the hydrologic cycle of permafrost degradation under the influence of climate change has caused an inestimable threat to sustainable regulation of the ecosystem. This study quantified the responses of main hydrological elements, including soil moisture, groundwater, runoff components and discharge to totally degraded permafrost in eastern High Asia by establishing cases with and without thermodynamics using a cold region model combining hydrological processes and thermodynamics. The results showed that the model successfully simulated discharge in cold region basins. Totally degraded permafrost decreased soil moisture in the vadose zone (SMV) and increased the absolute depth to ground water (ADGW). In the daily scale, total permafrost degradation decreased the direct flow in autumn, slightly increased direct flow in spring and decreased interflow in summer. Total permafrost degradation also increased daily baseflow all year round and by >50% in spring, decreased daily discharge during autumn and increased daily discharge during spring. In the annual scale, total permafrost degradation increased direct flow, baseflow, and discharge, and decreased interflow. The magnitudes of these changes were positively related to the ratios of permafrost to the subbasin area. The responses of daily runoff components and discharge to totally degraded permafrost were significantly larger than the annual value. The groundwater level, direct flow and baseflow were far more sensitive to permafrost degradation than SMV, interflow and discharge. The responses of annual individual hydrological elements were more obvious than the annual discharge. These quantified results can be extensively used in lumped hydrology simulations, water resource assessments and eco-system management for partial permafrost degradation.
RESUMO
The present endocrine disrupting chemicals (EDCs) in wastewater effluents due to incomplete removal during the treatment processes may cause potential ecological and human health risks. This study evaluated the removal and uptake of seven EDCs spiked in two types of wastewater effluent (i.e., ultrafiltration and ozonation) and effluent cultivated with the freshwater green alga Nannochloris sp. In ultrafiltration effluent cultivated with Nannochloris sp. for 7 days, the removal rate of 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), and salicylic acid (SAL) was 60%; but Nannochloris sp. did not promote the removal of other EDCs studied. The algal-mediated removal of E2, EE2, and SAL was attributed to photodegradation and biodegradation. Triclosan (TCS) underwent rapid photodegradation regardless of adding algae in the effluent with 63%-100% removal within 7 days. Triclosan was also found associated with algal cells immediately after adding algae, and thus the primary mechanisms involved were photodegradation and bioremoval (i.e., bioadsorption and bioaccumulation). After algal cultivation, TCS still has a bioaccumulation potential to pose high risks within the food web and the endocrine disrupting properties of the residual estrogens in the effluent are not eliminated. Algal cultivation can be exploited to treat wastewater effluents but the removal efficiencies of EDCs highly depend on chemical types.
Assuntos
Biodegradação Ambiental , Disruptores Endócrinos/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Clorófitas/metabolismo , Estradiol/análise , Congêneres do Estradiol , Estrogênios , Etinilestradiol/análise , Água Doce , Humanos , Fotólise , Triclosan , UltrafiltraçãoRESUMO
Untreated organic contaminants in municipal wastewater, such as endocrine-disrupting chemicals (EDCs), have become a significant issue in aquatic ecosystems, particularly in freshwater bodies that receive wastewater discharge. This has raised concerns about the accumulation of EDCs in aquatic species via continuous exposure. This study evaluated the uptake of EDCs by quagga mussels (Dreissena bugensis), an invasive species in a water supply reservoir. The field sampling results showed that steroid hormones were not detected in the water samples, and only pharmaceuticals and personal care products were present (0.49 to 36 ng/L). Additionally, testosterone was the most abundant steroid in the mussel tissue (6.3 to 20 ng/g dry weight), and other synthetic chemicals (i.e., bisphenol A, triclosan, and salicylic acid) were also detected in the mussel tissue (24 to 47 ng/g dry weight). After being exposed to exogenous EDCs for 7, 21, and 42 days under controlled laboratory conditions, testosterone was not detected in the mussel anymore, but bisphenol A, triclosan, and salicylic acid were found at relatively high levels in the mussel tissue, although the concentrations did not increase over time. Overall, the study demonstrated the uptake of EDCs in quagga mussels, which suggests that this species can be used to reflect water quality deterioration in aquatic ecosystems.
Assuntos
Dreissena/metabolismo , Ecossistema , Disruptores Endócrinos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Compostos Benzidrílicos , Bivalves/metabolismo , Água Doce , Espécies Introduzidas , Fenóis , Alimentos Marinhos , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
Intermittent turbulent bursts have great impacts on sediment resuspension in coastal regions, tidal estuaries, and lakes. In this study, the role of turbulence structure on sediment resuspension was examined at Meiliang Bay of Lake Taihu, the third largest freshwater lake in China. The instantaneous three-dimensional velocity and suspended sediment concentrations were synchronously recorded by Acoustic Doppler Velocimetry (ADV) and Optical Backscatter Sensor (OBS) placed close to the lakebed. Statistical and quadrant analyses results revealed that the coherent structure contributed significantly to sediment particle entrainment. The intermittent burst events (dominant ejection and sweep) were the main energy source for sediment resuspension processes. 99.2% of turbulent sediment fluxes were triggered by ejection and sweep events, whereas the contributions coming from the outward interactions and inward interactions were relatively small. The large-amplitude burst events in the coherent structure dominated the influence on the sediment diffusion. Additionally, it was found that instantaneous sediment particle entrainment occurred earlier than the mean critical shear stress, which was induced by the stochastic nature of turbulence. The amount of sediment flux considering the turbulence characteristics was one or two larger magnitudes than the flux amount assessed by the time-averaged flow field, which indicated the critical shear stress approach might underestimate the sediment resuspension. Therefore, the influence of turbulence performance on sediment entrainment shall be seriously considered when evaluating sediment flux and internal nutrient loads in Lake Taihu.
Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Lagos/análise , Nitrogênio/análise , Fósforo/análise , China , Monitoramento Ambiental/instrumentação , Sedimentos Geológicos/análise , Lagos/química , Estresse Mecânico , VentoRESUMO
To investigate the relationship between cyanobacteria decomposition and the remobilization of heavy metals in Taihu Lake, the indoor simulation experiments were conducted. The areas of Taihu Lake that undergo harmful algal blooms mostly caused by excessive cyanobacteria have serious problems of heavy metal pollution. The results showed that cyanobacteria decomposition can release heavy metals into the water and change the total contents and chemical speciation of Cr, Ni, Cu, Zn, As, Cd, Hg, and Pb in sediment due to the change of physical and chemical properties in overlying water and sediment. The decomposition rate of cyanobacteria with sediment was clearly faster than that without sediment, and decomposition changed the pH and dissolved oxygen (DO) concentrations in overlying water. The cyanobacteria decomposition reduced the oxidation-reduction potential (ORP), and increased organic matter (OM) and total organic carbon (TOC) in the surface sediment. According to ecological risk assessment, the cyanobacteria decomposition increased the degree of heavy metal pollution and the potential ecological risk in sediment.
Assuntos
Cianobactérias/química , Sedimentos Geológicos/química , Lagos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , China , Cianobactérias/isolamento & purificação , Ecologia , Poluição Ambiental , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Medição de Risco , ÁguaRESUMO
The identification of coherent structures is very important in investigating the sediment transport mechanism and controlling the eutrophication in shallow lakes. This study analyzed the turbulence characteristics and the sensitivity of quadrant analysis to threshold level. Simultaneous in situ measurements of velocities and suspended sediment concentration (SSC) were conducted in Lake Taihu with acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) instruments. The results show that the increase in hole size makes the difference between dominant and non-dominant events more distinct. Wind velocity determines the frequency of occurrence of sweep and ejection events, which provide dominant contributions to the Reynolds stress. The increase of wind velocity enlarges the magnitude of coherent events but has little impact on the events frequency with the same hole size. The events occurring within short periods provide large contributions to the momentum flux. Transportation and diffusion of sediment are in control of the intermittent coherent events to a large extent.
Assuntos
Lagos/química , Acústica , Eutrofização , Lagos/análise , VentoRESUMO
Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4â³, E 120° 9' 38.3â³) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R2: 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R2: 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication process and algal blooms formation in shallow water environments. OUTCOME: Wind field is the key control factor for thermal destratification and hypoxia reduction. 24.1C° is the critical/threshold temperature for hypoxia, Chlorophyll-a and NH3-N concentrations of the shallow freshwater lake.
Assuntos
Monitoramento Ambiental , Eutrofização , Lagos/química , Vento , Baías/química , China , Clorofila/análise , Clorofila A , Hidrodinâmica , Temperatura , Qualidade da ÁguaRESUMO
The persistence and fate of pharmaceutical and personal care products (PPCPs) in the Lake Mead ecosystem are particularly important considering the potential ecological risks and human health impacts. This study evaluated the removal of five common PPCPs (i.e., trimethoprim, sulfamethoxazole, carbamazepine, ciprofloxacin, and triclosan) from Lake Mead water mediated by the green alga Nannochloris sp. The results from the incubation studies showed that trimethoprim and carbamazepine were highly resistant to uptake in the algal cultural medium and were measured at approximately 90%-100% of the applied dose after 14days of incubation. Sulfamethoxazole was found relatively persistent, with >60% of the applied dose remaining in the water after 14days, and its removal was mainly caused by algae-mediated photolysis. However, ciprofloxacin and triclosan dissipated significantly and nearly 100% of the compounds were removed from the water after 7days of incubation under 24h of light. Ciprofloxacin and triclosan were highly susceptible to light, and their estimated half-lives were 12.7hours for ciprofloxacin and 31.2hours for triclosan. Algae-mediated sorption contributed to 11% of the removal of trimethoprim and sulfamethoxazole, 13% of the removal of carbamazepine, and 27% of the removal of triclosan from the lake water. This research showed that 1) trimethoprim, sulfamethoxazole, and carbamazepine are quite persistent in aquatic environments and may potentially affect human health via drinking water intake; 2) photolysis is the dominant pathway to remove ciprofloxacin from aquatic ecosystems, which indicates that ciprofloxacin may have lower ecological risks compared with other PPCPs; and 3) triclosan can undergo photolysis as well as algae-mediated uptake and it may potentially affect the food web because of its high toxicity to aquatic species.
Assuntos
Clorófitas/metabolismo , Cosméticos/isolamento & purificação , Lagos , Preparações Farmacêuticas/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Ciprofloxacina , Sulfametoxazol , TriclosanRESUMO
This paper focuses on the characterization of extracellular polymeric substances (EPS), which are composed of soluble EPS (SL-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS) produced by Microcystis aeruginosa under the stress of linoleic acid (LA) and LA sustained-release microspheres. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and Fourier transform infrared (FTIR) spectrometry were used to characterize three forms of EPS while the content of polysaccharide and protein was tested, respectively. The results showed that the highest inhibitor rate (IR) occurred when M. aeruginosa were exposed to LA sustained-release microspheres of 0.3 g L-1. The 3D-EEM contour demonstrated that tryptophan and protein-like substances were detected in all three EPS fractions, whereas humic acid-like substance was only distributed in SL-EPS, and aromatic proteins merely existed in LB-EPS and TB-EPS. The infrared spectrum showed that functional groups in three EPS fractions had no obvious change in all experimental groups. Polysaccharide (1120-1270 cm-1, C-O-C and C-O stretching vibration) and protein (1384-1670 cm-1, C-N and N-H stretching) were detected in three forms of EPS. Graphical abstract á .