Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511593

RESUMO

The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Testes Genéticos
2.
Genome Res ; 27(6): 902-912, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28465312

RESUMO

The scientific community has avoided using tissue samples from patients that have been exposed to systemic chemotherapy to infer the genomic landscape of a given cancer. Esophageal adenocarcinoma is a heterogeneous, chemoresistant tumor for which the availability and size of pretreatment endoscopic samples are limiting. This study compares whole-genome sequencing data obtained from chemo-naive and chemo-treated samples. The quality of whole-genomic sequencing data is comparable across all samples regardless of chemotherapy status. Inclusion of samples collected post-chemotherapy increased the proportion of late-stage tumors. When comparing matched pre- and post-chemotherapy samples from 10 cases, the mutational signatures, copy number, and SNV mutational profiles reflect the expected heterogeneity in this disease. Analysis of SNVs in relation to allele-specific copy-number changes pinpoints the common ancestor to a point prior to chemotherapy. For cases in which pre- and post-chemotherapy samples do show substantial differences, the timing of the divergence is near-synchronous with endoreduplication. Comparison across a large prospective cohort (62 treatment-naive, 58 chemotherapy-treated samples) reveals no significant differences in the overall mutation rate, mutation signatures, specific recurrent point mutations, or copy-number events in respect to chemotherapy status. In conclusion, whole-genome sequencing of samples obtained following neoadjuvant chemotherapy is representative of the genomic landscape of esophageal adenocarcinoma. Excluding these samples reduces the material available for cataloging and introduces a bias toward the earlier stages of cancer.


Assuntos
Adenocarcinoma/genética , Antineoplásicos/uso terapêutico , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Taxa de Mutação , Proteínas de Neoplasias/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Biologia Computacional , Variações do Número de Cópias de DNA , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Esôfago/metabolismo , Esôfago/patologia , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Proteínas de Neoplasias/metabolismo , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Fatores de Tempo
3.
Clin Chem ; 62(6): 848-55, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27117469

RESUMO

BACKGROUND: There is great need for the development of highly accurate cost effective technologies that could facilitate the widespread adoption of noninvasive prenatal testing (NIPT). METHODS: We developed an assay based on the targeted analysis of cell-free DNA for the detection of fetal aneuploidies of chromosomes 21, 18, and 13. This method enabled the capture and analysis of selected genomic regions of interest. An advanced fetal fraction estimation and aneuploidy determination algorithm was also developed. This assay allowed for accurate counting and assessment of chromosomal regions of interest. The analytical performance of the assay was evaluated in a blind study of 631 samples derived from pregnancies of at least 10 weeks of gestation that had also undergone invasive testing. RESULTS: Our blind study exhibited 100% diagnostic sensitivity and specificity and correctly classified 52/52 (95% CI, 93.2%-100%) cases of trisomy 21, 16/16 (95% CI, 79.4%-100%) cases of trisomy 18, 5/5 (95% CI, 47.8%-100%) cases of trisomy 13, and 538/538 (95% CI, 99.3%-100%) normal cases. The test also correctly identified fetal sex in all cases (95% CI, 99.4%-100%). One sample failed prespecified assay quality control criteria, and 19 samples were nonreportable because of low fetal fraction. CONCLUSIONS: The extent to which free fetal DNA testing can be applied as a universal screening tool for trisomy 21, 18, and 13 depends mainly on assay accuracy and cost. Cell-free DNA analysis of targeted genomic regions in maternal plasma enables accurate and cost-effective noninvasive fetal aneuploidy detection, which is critical for widespread adoption of NIPT.


Assuntos
Transtornos Cromossômicos/genética , DNA/genética , Síndrome de Down/genética , Feto/metabolismo , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Análise para Determinação do Sexo/métodos , Trissomia/genética , Transtornos Cromossômicos/sangue , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , DNA/sangue , Síndrome de Down/sangue , Feminino , Humanos , Gravidez , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18
4.
Genet Res (Camb) ; 98: e15, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834155

RESUMO

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.


Assuntos
Biomarcadores/análise , Metilação de DNA , DNA/genética , Doenças Fetais/diagnóstico , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Complicações na Gravidez/diagnóstico , Amostra da Vilosidade Coriônica , DNA/sangue , Epigênese Genética , Feminino , Doenças Fetais/sangue , Doenças Fetais/genética , Feto/metabolismo , Humanos , Imunoprecipitação , Testes para Triagem do Soro Materno , Placenta/metabolismo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Primeiro Trimestre da Gravidez
5.
J Neurophysiol ; 113(10): 3623-33, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25787953

RESUMO

The recording of brain event-related potentials (ERPs) is a widely used technique to investigate the neural basis of sensory perception and cognitive processing in humans. Due to the low magnitude of ERPs, averaging of several consecutive stimuli is typically employed to enhance the signal to noise ratio (SNR) before subsequent analysis. However, when the temporal interval between two consecutive stimuli is smaller than the latency of the main ERP peaks, i.e., when the stimuli are presented at a fast rate, overlaps between the corresponding ERPs may occur. These overlaps are usually dealt with by assuming that there is a simple additive superposition between the elicited ERPs and consequently performing algebraic waveform subtractions. Here, we test this assumption rigorously by providing a statistical framework that examines the presence of nonlinear additive effects between overlapping ERPs elicited by successive stimuli with short interstimulus intervals (ISIs). The results suggest that there are no nonlinear additive effects due to the time overlap per se but that, for the range of ISIs examined, the second ERP is modulated by the presence of the first stimulus irrespective of whether there is time overlap or not. In other words, two ERPs that overlap in time can still be written as an addition of two ERPs but with the second ERP being different from the first. This difference is also present in the case of nonoverlapping ERPs with short ISIs. The modulation effect elicited on the second ERP by the first stimulus is dependent on the ISI value.


Assuntos
Potenciais Evocados/fisiologia , Dinâmica não Linear , Adulto , Análise de Variância , Biofísica , Eletroencefalografia , Feminino , Análise de Fourier , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
7.
SN Comput Sci ; 4(4): 378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193216

RESUMO

The aging population and the subsequent changing societal structures are foreseen to bring both opportunities and challenges for the economy, services and society at large. Digital exclusion among older people may become less of an issue in the future, as those who have used the Internet in their working and social lives continue to do so as they reach old age. However, given the rapid pace of technological advances, older adults, may still experience some degree of digital exclusion. Technological advances may offer benefits for older adults, such as maintaining their independence and connection to society. Nevertheless, adopting new technologies like augmented reality (AR) may be difficult for older adults commonly due to the decline of cognitive and physical abilities and/or their lack of familiarity, apprehension and understanding on these new technologies. In this study, the GUIDed system is presented, an AR-operated app developed in this work, aiming to support the independence and quality of life of older people. Finally, the paper discusses lessons learned from the co-creation process, including the evaluation methods, paper prototypes, focus groups and living labs, and the results on the acceptance of the AR functionality and for improving the GUIDed system.

8.
Oncol Lett ; 25(1): 38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589665

RESUMO

Gliomas are the most common malignant primary brain tumors characterized by poor prognosis. The genotyping of tumors using next generation sequencing (NGS) platforms enables the identification of genetic alterations that constitute diagnostic, prognostic and predictive biomarkers. The present study investigated the molecular profile of 32 tumor samples from 32 patients with high-grade gliomas by implementing a broad 80-gene targeted NGS panel while reporting their clinicopathological characteristics and outcomes. Subsequently, 14 of 32 tumor specimens were also genotyped using a 55-gene NGS panel to validate the diagnostic accuracy and clinical utility of the extended panel. The median follow-up was 19.2 months. In total, 129 genetic alterations including 33 structural variants were identified in 38 distinct genes. Among 96 variants (single nucleotide variants and insertions and deletions), 38 were pathogenic and 58 variants of unknown clinical significance. TP53 was the most frequently mutated gene, followed by PTEN and IDH1 genes. Glioma patients with IDH1 mutant tumors were younger and had significantly longer overall survival compared to patients with wild-type IDH1 tumors. Similarly, tumors with TP53 mutations were more likely observed in younger patients with glioma. Subsequently, a comparison of mutational profiles of samples analyzed by both panels was also performed. Implementation of the comprehensive pan-cancer and the MOL panels resulted in the identification of 37 and 15 variants, respectively. Of those, 13 were common. Comprehensive pan-cancer panel identified 24 additional variants, 22 of which were located in regions that were not targeted by the MOL panel. By contrast, the MOL panel identified two additional variants. Overall, the present study demonstrated that using an extended tumor profile assay instead of a glioma-specific tumor profile panel identified additional genetic changes that may be taken into consideration as potential therapeutic targets for glioma diagnosis and molecular classification.

9.
Front Oncol ; 12: 855463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402285

RESUMO

Introduction: The mechanisms underlying high drug resistance and relapse rates after multi-modal treatment in patients with colorectal cancer (CRC) and liver metastasis (LM) remain poorly understood. Objective: We evaluate the potential translational implications of intra-patient heterogeneity (IPH) comprising primary and matched metastatic intratumor heterogeneity (ITH) coupled with circulating tumor DNA (ctDNA) variability. Methods: A total of 122 multi-regional tumor and perioperative liquid biopsies from 18 patients were analyzed via targeted next-generation sequencing (NGS). Results: The proportion of patients with ITH were 53% and 56% in primary CRC and LM respectively, while 35% of patients harbored de novo mutations in LM indicating spatiotemporal tumor evolution and the necessity of multiregional analysis. Among the 56% of patients with alterations in liquid biopsies, de novo mutations in cfDNA were identified in 25% of patients, which were undetectable in both CRC and LM. All 17 patients with driver alterations harbored mutations targetable by molecularly targeted drugs, either approved or currently under evaluation. Conclusion: Our proof-of-concept prospective study provides initial evidence on potential clinical superiority of IPH and warrants the conduction of precision oncology trials to evaluate the clinical utility of I PH-driven matched therapy.

10.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429865

RESUMO

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

11.
Mol Genet Genomic Med ; 8(2): e1094, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821748

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) for fetal aneuploidies has rapidly been incorporated into clinical practice. Current NGS-based methods can reliably detect fetal aneuploidies non-invasively with fetal fraction of at least 4%. Inaccurate fetal fraction assessment can compromise the accuracy of the test as affected samples with low fetal fraction have an increased risk for misdiagnosis. Using a novel set of fetal-specific differentially methylated regions (DMRs) and methylation sensitive restriction digestion (MSRD), we developed a multiplex ddPCR assay for accurate detection of fetal fraction in maternal plasma. METHODS: We initially performed MSRD followed by methylation DNA immunoprecipitation (MeDIP) and NGS on fetal and non-pregnant female tissues to identify fetal-specific DMRs. DMRs with the highest methylation difference between the two tissues were selected for fetal fraction estimation employing MSRD and multiplex ddPCR. Chromosome Y multiplex ddPCR assay (YMM) was used as a reference standard, to develop our fetal fraction estimation model in male pregnancy samples. Additional 123 samples were tested to examine whether the model is sex dependent and/or ploidy dependent. RESULTS: In all, 93 DMRs were identified of which seven were selected for fetal fraction estimation. Statistical analysis resulted in the final model which included four DMRs (FFMM). High correlation with YMM-based fetal fractions was observed using 85 male pregnancies (r = 0.86 95% CI: 0.80-0.91). The model was confirmed using an independent set of 53 male pregnancies. CONCLUSION: By employing a set of well-characterized DMRs, we developed a SNP-, sex- and ploidy-independent methylation-based multiplex ddPCR assay for accurate fetal fraction estimation.


Assuntos
Aneuploidia , Metilação de DNA , Reação em Cadeia da Polimerase Multiplex/métodos , Teste Pré-Natal não Invasivo/métodos , Cromossomos Humanos Y/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase Multiplex/normas , Teste Pré-Natal não Invasivo/normas , Gravidez , Sensibilidade e Especificidade
12.
EBioMedicine ; 56: 102765, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32460165

RESUMO

BACKGROUND: The cancer risk in Barrett's oesophagus (BO) is difficult to estimate. Histologic dysplasia has strong predictive power, but can be missed by random biopsies. Other clinical parameters have limited utility for risk stratification. We aimed to assess whether a molecular biomarker panel on targeted biopsies can predict neoplastic progression of BO. METHODS: 203 patients with BO were tested at index endoscopy for 9 biomarkers (p53 and cyclin A expression; aneuploidy and tetraploidy; CDKN2A (p16), RUNX3 and HPP1 hypermethylation; 9p and 17p loss of heterozygosity) on autofluorescence-targeted biopsies and followed-up prospectively. Data comparing progressors to non-progressors were evaluated by univariate and multivariate analyses using survival curves, Cox-proportional hazards and logistic regression models. FINDINGS: 127 patients without high-grade dysplasia (HGD) or oesophageal adenocarcinoma (OAC) at index endoscopy were included, of which 42 had evidence of any histologic progression over time. Aneuploidy was the only predictor of progression from non-dysplastic BO (NDBO) to any grade of neoplasia (p = 0.013) and HGD/OAC (p = 0.002). Aberrant p53 expression correlated with risk of short-term progression within 12 months, with an odds ratio of 6.0 (95% CI: 3.1-11.2). A panel comprising aneuploidy and p53 had an area under the receiving operator characteristics curve of 0.68 (95% CI: 0.59-0.77) for prediction of any progression. INTERPRETATION: Aneuploidy is the only biomarker that predicts neoplastic progression of NDBO. Aberrant p53 expression suggests prevalent dysplasia, which might have been missed by random biopsies, and warrants early follow up.


Assuntos
Adenocarcinoma/genética , Aneuploidia , Esôfago de Barrett/patologia , Neoplasias Esofágicas/genética , Marcadores Genéticos , Idoso , Idoso de 80 Anos ou mais , Esôfago de Barrett/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Ciclina A/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Progressão da Doença , Endoscopia , Feminino , Humanos , Modelos Logísticos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Estudos Prospectivos , Proteína Supressora de Tumor p53/genética
13.
Mol Cytogenet ; 12: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338126

RESUMO

INTRODUCTION: Non-Invasive Prenatal Testing (NIPT) for fetal aneuploidies using cell-free DNA (cfDNA) has been widely adopted in clinical practice due to its improved accuracy. A number of NIPT tests have been developed and validated. The purpose of this study is to evaluate the performance of the Veracity NIPT test for sex chromosome aneuploidy (SCA) detection in singleton pregnancies, autosomal aneuploidy detection in twin pregnancies and evaluation of Veracity clinical performance under routine NIPT conditions in a diverse cohort. METHODS: Blinded retrospective study in singleton pregnancies (n = 305); blinded retrospective and prospective study in twin pregnancies (n = 306) and prospective evaluation of clinical performance in singleton and twin pregnancies (n = 10564). RESULTS: Validation study results for the detection of SCAs in singleton pregnancies exhibited 100% sensitivity and specificity and correctly classified 7 (45,X), 4 (47,XXY), 2 (47,XXX) and 1 (47,XYY) cases. Validation study results for autosomal aneuploidy detection in twin pregnancies exhibited 100% sensitivity and specificity and correctly classified 3 trisomy 21, 1 trisomy 18 and 1 trisomy 13 samples. Clinical performance evaluation of Veracity was performed in 10564 pregnancies with median gestational age of 13 weeks, median maternal age 35 years and median gestational weight of 64 kg. Based on confirmation feedback the PPV for trisomies 21, 18 and 13 was estimated at 100% (95% CI, 92-100%), 100% (95% CI, 69-100%) and 71% (95% CI, 29-96%), respectively. Estimated PPV for Monosomy X was 57% (95%CI, 18-90%), while the NPV for SCA detection was estimated at 100% (95% CI, 99.94-100%). CONCLUSION: Veracity NIPT test is based on a very powerful, highly accurate methodology that can be safely applied in the clinical setting.

14.
Mol Cytogenet ; 12: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31832098

RESUMO

BACKGROUND: Non-invasive prenatal testing (NIPT) has been widely adopted for the detection of fetal aneuploidies and microdeletion syndromes, nevertheless, limited clinical utilization has been reported for the non-invasive prenatal screening of monogenic diseases. In this study, we present the development and validation of a single comprehensive NIPT for prenatal screening of chromosomal aneuploidies, microdeletions and 50 autosomal recessive disorders associated with severe or moderate clinical phenotype. RESULTS: We employed a targeted capture enrichment technology powered by custom TArget Capture Sequences (TACS) and multi-engine bioinformatics analysis pipeline to develop and validate a novel NIPT test. This test was validated using 2033 cell-fee DNA (cfDNA) samples from maternal plasma of pregnant women referred for NIPT and paternal genomic DNA. Additionally, 200 amniotic fluid and CVS samples were used for validation purposes. All NIPT samples were correctly classified exhibiting 100% sensitivity (CI 89.7-100%) and 100% specificity (CI 99.8-100%) for chromosomal aneuploidies and microdeletions. Furthermore, 613 targeted causative mutations, of which 87 were unique, corresponding to 21 monogenic diseases, were identified. For the validation of the assay for prenatal diagnosis purposes, all aneuploidies, microdeletions and point mutations were correctly detected in all 200 amniotic fluid and CVS samples. CONCLUSIONS: We present a NIPT for aneuploidies, microdeletions, and monogenic disorders. To our knowledge this is the first time that such a comprehensive NIPT is available for clinical implementation.

15.
PLoS One ; 13(6): e0199010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889893

RESUMO

DNA methylation is the most characterized epigenetic process exhibiting stochastic variation across different tissues and individuals. In non-invasive prenatal testing (NIPT) fetal specific methylated regions can potentially be used as biomarkers for the accurate detection of fetal aneuploidies. The aim of this study was the investigation of inter-individual methylation variability of previously reported fetal-specific markers and their implementation towards the development of a novel NIPT assay for the detection of trisomies 13, 18, and 21. Methylated DNA Immunoprecipitation (MeDIP) combined with in-solution targeted enrichment followed by NGS was performed in 29 CVS and 27 female plasma samples to assess inter-individual methylation variability of 331 fetal-specific differentially methylated regions (DMRs). The same approach was implemented for the NIPT of trisomies 13, 18 and 21 using spiked-in (n = 6) and pregnancy samples (n = 44), including one trisomy 13, one trisomy 18 and four trisomy 21. Despite the variability of DMRs, CVS samples showed statistically significant hypermethylation (p<2e-16) compared to plasma samples. Importantly, our assay correctly classified all euploid and aneuploid cases without any false positive results (n = 44). This work provides the starting point for the development of a NIPT assay based on a robust set of fetal specific biomarkers for the detection of fetal aneuploidies. Furthermore, the assay's targeted nature significantly reduces the analysis cost per sample while providing high read depth at regions of interest increasing significantly its accuracy.


Assuntos
Biomarcadores/análise , DNA/metabolismo , Cuidado Pré-Natal , Aneuploidia , Cromossomos Humanos Par 18 , Cromossomos Humanos Par 21 , DNA/química , DNA/isolamento & purificação , Metilação de DNA , Síndrome de Down/genética , Feminino , Feto/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Gravidez , Análise de Sequência de DNA
16.
PLoS One ; 12(2): e0171319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158220

RESUMO

Noninvasive prenatal testing (NIPT) using whole genome and targeted sequencing has become increasingly accepted for clinical detection of Trisomy 21 and sex chromosome aneuploidies. Few studies have shown that sub-chromosomal deletions or duplications associated with genetic syndromes can also be detected in the fetus noninvasively. There are still limitations on these methodologies such as the detection of variants of unknown clinical significance, high number of false positives, and difficulties to detect small aberrations. We utilized a recently developed targeted sequencing approach for the development of a NIPT assay, for large and small size deletions/duplications, which overcomes these existing limitations. Artificial pregnancies with microdeletion/microduplication syndromes were created by spiking DNA from affected samples into cell free DNA (cfDNA) from non-pregnant samples. Unaffected spiked samples and normal pregnancies were used as controls. Target Capture Sequences (TACS) for seven syndromes were designed and utilized for targeted capture enrichment followed by sequencing. Data was analyzed using a statistical pipeline to identify deletions or duplications on targeted regions. Following the assay development a proof of concept study using 33 normal pregnancies, 21 artificial affected and 17 artificial unaffected pregnancies was carried out to test the sensitivity and specificity of the assay. All 21 abnormal spiked-in samples were correctly classified as subchromosomal aneuploidies while the 33 normal pregnancies or 17 normal spiked-in samples resulted in a false positive result. We have developed an NIPT assay for the detection of sub-chromosomal deletions and duplications using the targeted capture enrichment technology. This assay demonstrates high accuracy, high read depth of the genomic region of interest, and can identify deletions/duplications as small as 0.5 Mb. NIPT of fetal microdeletion/microduplication syndromes can be of enormous benefit in the management of pregnancies at risk both for prospective parents and health care providers.


Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Diagnóstico Pré-Natal , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Natal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Lancet Gastroenterol Hepatol ; 2(1): 23-31, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404010

RESUMO

BACKGROUND: Barrett's oesophagus predisposes to adenocarcinoma. However, most patients with Barrett's oesophagus will not progress and endoscopic surveillance is invasive, expensive, and fraught by issues of sampling bias and the subjective assessment of dysplasia. We investigated whether a non-endoscopic device, the Cytosponge, could be coupled with clinical and molecular biomarkers to identify a group of patients with low risk of progression suitable for non-endoscopic follow-up. METHODS: In this multicentre cohort study (BEST2), patients with Barrett's oesophagus underwent the Cytosponge test before their surveillance endoscopy. We collected clinical and demographic data and tested Cytosponge samples for a molecular biomarker panel including three protein biomarkers (P53, c-Myc, and Aurora kinase A), two methylation markers (MYOD1 and RUNX3), glandular atypia, and TP53 mutation status. We used a multivariable logistic regression model to compute the conditional probability of dysplasia status. We selected a simple model with high classification accuracy and applied it to an independent validation cohort. The BEST2 study is registered with ISRCTN, number 12730505. FINDINGS: The discovery cohort consisted of 468 patients with Barrett's oesophagus and intestinal metaplasia. Of these, 376 had no dysplasia and 22 had high-grade dysplasia or intramucosal adenocarcinoma. In the discovery cohort, a model with high classification accuracy consisted of glandular atypia, P53 abnormality, and Aurora kinase A positivity, and the interaction of age, waist-to-hip ratio, and length of the Barrett's oesophagus segment. 162 (35%) of 468 of patients fell into the low-risk category and the probability of being a true non-dysplastic patient was 100% (99% CI 96-100) and the probability of having high-grade dysplasia or intramucosal adenocarcinoma was 0% (0-4). 238 (51%) of participants were classified as of moderate risk; the probability of having high-grade dysplasia was 14% (9-21). 58 (12%) of participants were classified as high-risk; the probability of having non-dysplastic endoscopic biopsies was 13% (5-27), whereas the probability of having high-grade dysplasia or intramucosal adenocarcinoma was 87% (73-95). In the validation cohort (65 patients), 51 were non-dysplastic and 14 had high-grade dysplasia. In this cohort, 25 (38%) of 65 patients were classified as being low-risk, and the probability of being non-dysplastic was 96·0% (99% CI 73·80-99·99). The moderate-risk group comprised 27 non-dysplastic and eight high-grade dysplasia cases, whereas the high-risk group (8% of the cohort) had no non-dysplastic cases and five patients with high-grade dysplasia. INTERPRETATION: A combination of biomarker assays from a single Cytosponge sample can be used to determine a group of patients at low risk of progression, for whom endoscopy could be avoided. This strategy could help to avoid overdiagnosis and overtreatment in patients with Barrett's oesophagus. FUNDING: Cancer Research UK.


Assuntos
Esôfago de Barrett/diagnóstico , Citodiagnóstico/métodos , Medição de Risco/métodos , Adenocarcinoma/patologia , Idoso , Esôfago de Barrett/patologia , Biomarcadores/análise , Estudos de Casos e Controles , Progressão da Doença , Neoplasias Esofágicas/patologia , Esofagoscopia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
18.
Nat Genet ; 48(10): 1131-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27595477

RESUMO

Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.


Assuntos
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Mutação , Adenocarcinoma/classificação , Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Idoso , Antineoplásicos/uso terapêutico , Antígenos CD8/imunologia , Linhagem Celular Tumoral , Estudos de Coortes , Dano ao DNA , DNA de Neoplasias , Neoplasias Esofágicas/classificação , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/terapia , Feminino , Heterogeneidade Genética , Genoma Humano , Humanos , Masculino , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Análise de Sequência de DNA
19.
PLoS One ; 10(12): e0143840, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26649886

RESUMO

Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results.


Assuntos
Carcinogênese , Transformação Celular Neoplásica , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Carcinógenos , Humanos , Camundongos , Neoplasias
20.
Eur J Gastroenterol Hepatol ; 27(5): 492-500, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25822856

RESUMO

OBJECTIVE: Adenocarcinomas at the gastro-oesophageal junction (GOJ) are currently stratified by tumour location. This retrospective study examines the association of preneoplastic conditions and inflammation of the gastric mucosa with GOJ cancer at different locations and compares them with nonjunctional gastric cancers. PATIENTS AND METHODS: A total of 520 patients with junctional and nonjunctional gastric cancer were assessed for the presence and degree of intestinal metaplasia, glandular atrophy and inflammation in the stomach. Histopathological data were complete for 428 patients (68.9% men, median age 67.7 years), including 172 patients with GOJ cancer (GOJ1: 1-5 cm proximal to the junction, GOJ2: 'true' junctional, GOJ3: 2-5 cm distal to the junction). Gastric inflammation and preneoplastic conditions were scored according to the updated Sydney classification and further stratified into respective operative link on gastritis assessment (OLGA) and operative link on gastritis assessment on intestinal metaplasia (OLGIM) stages. RESULTS: The prevalence and degree of gastric atrophy and intestinal metaplasia were significantly lower in GOJ1 than GOJ3 (P<0.01). Preneoplastic conditions in the stomach were similar in GOJ3 compared with nonjunctional gastric cancer. GOJ1 were almost exclusively (98.4%) of the intestinal type, whereas GOJ2 and GOJ3 were the diffuse type in 22.6 and 22.4% of the patients (P<0.001). Of all patients, only 8.5 and 12.7% presented with stage III/IV according to OLGA and OLGIM, respectively. However, data for OLGA and OLGIM staging were only available in 61.2 and 67.9% of patients, respectively. CONCLUSION: GOJ1 are less likely to be associated with gastric pathology compared with GOJ3 or nonjunctional gastric cancer. OLGA or OLGIM staging in patients with advanced gastro-oesophageal cancer seems to be of limited value.


Assuntos
Adenocarcinoma/patologia , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/patologia , Gastrite Atrófica/patologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/patologia , Idoso , Atrofia/patologia , Esôfago/patologia , Feminino , Mucosa Gástrica/patologia , Humanos , Masculino , Metaplasia/patologia , Estadiamento de Neoplasias , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA