Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tomography ; 10(3): 400-414, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535773

RESUMO

Detailed visualization of the cribriform plate is challenging due to its intricate structure. This study investigates how computed tomography (CT) with a novel photon counting (PC) detector enhance cribriform plate visualization compared to traditionally used energy-integrated detectors in patients. A total of 40 patients were included in a retrospective analysis, with half of them undergoing PC CT (Naeotom Alpha Siemens Healthineers, Forchheim, Germany) and the other half undergoing CT scans using an energy-integrated detector (Somatom Sensation 64, Siemens, Forchheim, Germany) in which the cribriform plate was visualized with a temporal bone protocol. Both groups of scans were evaluated for signal-to-noise ratio, radiation dose, the imaging quality of the whole scan overall, and, separately, the cribriform plate and the clarity of volume rendering reconstructions. Two independent observers conducted a qualitative analysis using a Likert scale. The results consistently demonstrated excellent imaging of the cribriform plate with the PC CT scanner, surpassing traditional technology. The visualization provided by PC CT allowed for precise anatomical assessment of the cribriform plate on multiplanar reconstructions and volume rendering imaging with reduced radiation dose (by approximately 50% per slice) and higher signal-to-noise ratio (by approximately 75%). In conclusion, photon-counting technology provides the possibility of better imaging of the cribriform plate in adult patients. This enhanced imaging could be utilized in skull base-associated pathologies, such as cerebrospinal fluid leaks, to visualize them more reliably for precise treatment.


Assuntos
Osso Etmoide , Tomografia Computadorizada por Raios X , Adulto , Humanos , Estudos Retrospectivos , Razão Sinal-Ruído
2.
Tomography ; 10(5): 654-659, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38787010

RESUMO

This brief report aimed to show the utility of photon-counting technology alongside standard cranial imaging protocols for visualizing shunt valves in a patient's cranial computed tomography scan. Photon-counting CT scans with cranial protocols were retrospectively surveyed and four types of shunt valves were encountered: proGAV 2.0®, M.blue®, Codman Certas®, and proSA®. These scans were compared with those obtained from non-photon-counting scanners at different time points for the same patients. The analysis of these findings demonstrated the usefulness of photon-counting technology for the clear and precise visualization of shunt valves without any additional radiation or special reconstruction patterns. The enhanced utility of photon-counting is highlighted by providing superior spatial resolution compared to other CT detectors. This technology facilitates a more accurate characterization of shunt valves and may support the detection of subtle abnormalities and a precise assessment of shunt valves.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Derivações do Líquido Cefalorraquidiano/instrumentação , Derivações do Líquido Cefalorraquidiano/métodos , Masculino , Feminino , Hidrocefalia/diagnóstico por imagem , Crânio/diagnóstico por imagem , Idoso
3.
Tomography ; 10(4): 543-553, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668400

RESUMO

This study introduces an application of innovative medical technology, Photon Counting Computer Tomography (PC CT) with novel detectors, for the assessment of shunt valves. PC CT technology offers enhanced visualization capabilities, especially for small structures, and opens up new possibilities for detailed three-dimensional imaging. Shunt valves are implanted under the skin and redirect excess cerebrospinal fluid, for example, to the abdominal cavity through a catheter. They play a vital role in regulating cerebrospinal fluid drainage in various pathologies, which can lead to hydrocephalus. Accurate imaging of shunt valves is essential to assess the rate of drainage, as their precise adjustment is a requirement for optimal patient care. This study focused on two adjustable shunt valves, the proGAV 2.0® and M. blue® (manufactured by Miethke, Potsdam, Germany). A comprehensive comparative analysis of PC CT and traditional X-ray techniques was conducted to explore this cutting-edge technology and it demonstrated that routine PC CT can efficiently assess shunt valves' adjustments. This technology shows promise in enhancing the accurate management of shunt valves used in settings where head scans are already frequently required, such as in the treatment of hydrocephalus.


Assuntos
Derivações do Líquido Cefalorraquidiano , Imageamento Tridimensional , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Humanos , Derivações do Líquido Cefalorraquidiano/métodos , Fótons , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia
4.
Diagnostics (Basel) ; 14(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39061698

RESUMO

BACKGROUND: Advances in computed tomography (CT) technology, particularly photon-counting CT (PCCT), are reshaping the possibilities for medical imaging. PCCT in spectral imaging enables the high-resolution visualization of tissues with material-specific accuracy. This study aims to establish a foundational approach for the in vivo visualization of intracranial blood using PCCT, focusing on non-enhanced imaging techniques and spectral imaging capabilities. METHODS: We employed photon-counting detector within a spectral CT framework to differentiate between venous and arterial intracranial blood. Our analysis included not only monoenergetic +67 keV reconstructions, but also images from virtual non-contrast and iodine phases, enabling detailed assessments of blood's characteristics without the use of contrast agents. RESULTS: Our findings demonstrate the ability of PCCT to provide clear and distinct visualizations of intracranial vascular structures. We quantified the signal-to-noise ratio across different imaging phases and found consistent enhancements in image clarity, particularly in the detection and differentiation of arterial and venous blood. CONCLUSION: PCCT offers a robust platform for the non-invasive and detailed visualization of intravascular intracranial blood. With its superior resolution and specific imaging capabilities, PCCT lays the groundwork for advancing clinical applications and research, notably in the diagnosis and management of intracranial disorders. This technology promises to improve diagnostic accuracy by enabling more precise imaging assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA