RESUMO
Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.
Assuntos
Evolução Biológica , Eucariotos , Fósseis , Bactérias/química , Bactérias/metabolismo , Eucariotos/química , Eucariotos/classificação , Eucariotos/metabolismo , Células Eucarióticas/química , Células Eucarióticas/classificação , Células Eucarióticas/metabolismo , Esteróis/análise , Esteróis/biossíntese , Esteróis/isolamento & purificação , Esteróis/metabolismo , Sedimentos Geológicos/química , Vias Biossintéticas , Organismos Aquáticos/química , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Biota , Filogenia , História AntigaRESUMO
Two novel compounds isolated from an amber sample from the Santonian of Piolenc (Vaucluse, SE France) were identified using nuclear magnetic resonance and high-resolution mass spectrometry as sulfurized analogues of diterpenic acids from the isopimaric series originating from ancient conifers possibly related to the Cupressaceae family. These two compounds are members of a diterpenoid series corresponding to early diagenetic transformation products of resin diterpenoids. They were likely formed once plant resin comes into contact with reduced sulfur species originating from bacterial sulfate reduction occurring in anaerobic settings such as mangroves or marshes. They represent the first evidence of sulfurization processes affecting plant resin prior to diagenetic transformation into amber. Given their mode of formation, these compounds may be used as indicators of sulfate-reducing processes in past depositional environments.
Assuntos
Âmbar , Diterpenos , Âmbar/química , Sulfatos , Diterpenos/química , Resinas Vegetais/química , PlantasRESUMO
Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.
Assuntos
Antracenos/química , Perileno/análogos & derivados , Teoria da Densidade Funcional , Perileno/química , PrótonsRESUMO
Confocal optical microscopy and tip-enhanced optical microscopy are applied to characterize the defect distributions in chemical vapor deposition-grown WS2 monolayer triangles qualitatively and quantitatively. The presence of defects in individual monolayer WS2 triangles is revealed with diffraction-limited spatial resolution in their photoluminescence (PL) images, from which the inhomogeneous defect density distribution is calculated, showing an inverse relationship to the PL intensity. The defect-related surface-enhanced Raman spectroscopy (SERS) effect is investigated by depositing a thin copper phthalocyanine layer (5 nm) as the probe molecule on the monolayer WS2 triangles surface. Higher SERS enhancement effects are observed at the defect-rich areas. Furthermore, tip-enhanced optical measurements are performed, which can reveal morphologically defected areas invisible in the confocal optical measurements. Furthermore, the area with high defect density appears brighter than the low-defected area in the tip-enhanced optical measurements, which are different from the observation in the confocal optical measurements. The underlying reasons are attributed to the near-field enhancement of the defect exciton emission induced by the optically excited tip and to an improved coupling efficiency between the tip-generated near-field with the altered dipole moment orientation at the local defect.
RESUMO
Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.
Assuntos
Ouro , Nanopartículas , Ouro/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Análise Espectral Raman/métodosRESUMO
A single metallic nanodisk is the simplest plasmonic nanostructure, but it is robust enough to generate a Fano resonance in the forward and backward scattering spectra by the increment of nanodisk height in the symmetric and asymmetric dielectric environment. Thanks to the phase retardation effect, the non-uniform distribution of electric field along the height of aluminum (Al) nanodisk generates the out-of-plane higher-order modes, which interfere with the dipolar mode and subsequently result in the Fano-lineshape scattering spectra. Meanwhile, the symmetry-breaking effect by the dielectric substrate and the increment of refractive index of the symmetric dielectric environment further accelerate the phase retardation effect and contribute to the appearance of out-of-plane modes. The experimental results on the periodic Al nanodisk arrays with different heights confirm the retardation-induced higher modes in the asymmetric and symmetric environment. The appearance of higher modes and blueshifted main dips in the transmission spectra prove the dominant role of out-of-plane higher modes on the plasmonic resonances of the taller Al nanodisk.
RESUMO
Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au-Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metallic photoluminescence. The experiments are conducted by altering the incident laser intensity and polarization using a home-built scanning confocal optical microscope. The results show that AMPL originates from the recombination of avalanche hot carriers that are seeded by multiphoton ionization. Notably, at the excitation stage, multiphoton ionization is shown to be assisted by the local electromagnetic field enhancement produced by coupled plasmonic modes. At the emission step, the giant AMPL intensity can be evaluated as a function of the local field environment and the thermal factor for hot carriers, in accordance with a linear relationship between the power law exponent coefficient and the emitted photon energy. The dramatic change in the spectral profile is explained by spectral linewidth broadening mechanisms. This study offers nanospectroscopic evidence of both the potential optical damages for plasmonic nanostructures and the underlying physical nature of light-matter interactions under a strong laser field; it illustrates the significance of the emerging topics of plasmonic-enhanced spectroscopy and laser-induced breakdown spectroscopy.
RESUMO
Improved performance in flexible organic light-emitting diodes (OLEDs) is demonstrated by using a hybrid nanostructured plasmonic electrode consisting of silver nanowires (AgNWs) decorated with silver nanoparticles (AgNPs) and covered by exfoliated graphene sheets. Such all-solution processed electrodes show high optical transparency and electrical conductivity. When integrated in an OLED with super yellow polyphenylene vinylene as the emissive layer, the plasmon coupling of the NW-NP hybrid plasmonic system is found to significantly enhance the fluorescence, demonstrated by both simulations and photoluminescence measurements, leading to a current efficiency of 11.61 cd A-1 and a maximum luminance of 20 008 cd m-2 in OLEDs. Stress studies reveal a superior mechanical flexibility to the commercial indium-tin-oxide (ITO) counterparts, due to the incorporation of exfoliated graphene sheets. Our results show that these hybrid nanostructured plasmonic electrodes can be applied as an effective alternative to ITO for use in high-performance flexible OLEDs.
RESUMO
Hypericin is one of the most efficient photosensitizers used in photodynamic tumor therapy (PDT). The reported treatments of this drug reach from antidepressive, antineoplastic, antitumor and antiviral activity. We show that hypericin can be optically detected down to a single molecule at ambient conditions. Hypericin can even be observed inside of a cancer cell, which implies that this drug can be directly used for advanced microscopy techniques (PALM, spt-PALM, or FLIM). Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching, and blinking dynamics. Sudden spectral changes can be associated with a reorientation of the molecule on the particle surface. These properties of hypericin are very sensitive to the local environment. Comparison of DFT calculations with SERS spectra show that both the neutral and deprotonated form of hypericin can be observed on the single molecule and ensemble level.
Assuntos
Perileno/análogos & derivados , Fármacos Fotossensibilizantes/química , Antracenos , Linhagem Celular Tumoral , Teoria da Densidade Funcional , Fluorescência , Humanos , Microscopia de Fluorescência , Modelos Químicos , Perileno/química , Imagem Individual de Molécula , Análise Espectral RamanRESUMO
Gold nanocones acting as optical antennas offer an excellent geometry for focusing light near the cone tip, acting as nano-light sources with spot sizes on the order of the tip radius. However only the vertical plasmon mode oscillating in the axial direction can effectively excite the tip, whereas lateral modes oscillating along the cone base create mostly unwanted background in applications. The present work investigates the three-dimensional plasmonic mode structure of nanocones both experimentally and numerically. By tuning the nanocone aspect ratio, the modes can be spectrally tuned relative to each other, making them coincide for maximum excitation, or tuning the base mode away from the vertical mode for effective background suppression.
RESUMO
We evaluate experimentally and theoretically the role of the residual ligands and ambient environment refractive index in the optical response of a single spherical gold nanoparticle on a substrate and demonstrate the changes in the near- and far-field properties of its hybridized modes in the presence of the cetyltrimethylammonium bromide (CTAB) layer. Particularly, we show that the conventional bilayer scheme for CTAB is not relevant for colloidal nanoparticles deposited on a substrate. We show that this CTAB layer considerably changes the amplitude and localization of the confinement of the electric field, which is of prime importance in the design of plasmonic complex systems coupled to emitters. Moreover, we numerically study the influence of the CTAB layer on the modification of sensitivity of plasmonic resonances of a gold nanopshere to local refractive index changes.
RESUMO
Euphorbia species are characterized by a net of laticifers producing large amounts of triterpenes. These hydrocarbon-like metabolites can be converted into fuel by the methods of the oil industry. Euphorbia lathyris is easily grown at an industrial scale. In an attempt to increase its triterpene production, the metabolic pathways leading to isoprenoid were investigated by incorporation of 13C labeled glucose and mevalonate and 2H labeled deoxyxylulose as well as by natural abundance isotope ratio GC-MS. Latex triterpenes are exclusively synthesized via the mevalonate (MVA) pathway: this may orient future search for improving the triterpene production in E. lathyris. Phytosterols and their precursors are mainly derived from MVA pathway with a slight contribution of the methylerythritol phosphate (MEP) pathway, whereas phytol is issued from MEP pathway with a minor contribution of the MVA pathway: this is in accordance with the metabolic cross-talk between cytosolic and plastidial compartments in plants. In addition, hopenol B behaved differently from the other latex triterpenes. Its 13C isotope abundance after incorporation of 13C labeled glucose and its natural abundance δ2H signature clearly differed from those of the other latex triterpenes indicating another metabolic origin and suggesting that it may be synthesized by an endophytic fungus.
Assuntos
Butadienos/metabolismo , Eritritol/metabolismo , Euphorbia/metabolismo , Fungos/metabolismo , Hemiterpenos/metabolismo , Redes e Vias Metabólicas/fisiologia , Ácido Mevalônico/metabolismo , Fosfatos/farmacocinética , Glucose/metabolismo , Látex/metabolismo , Fitosteróis/metabolismo , Triterpenos/metabolismo , Xilulose/análogos & derivados , Xilulose/metabolismoRESUMO
The optical characterization of a single metallic nanostructure has a strong interest in the scientific community owing to its localized surface plasmon resonances. For a single nano-object, the simplest and the accepted optical characterization technique is dark-field spectroscopy, even if there are many drawbacks and a certain complexity to operate it. We propose here using extinction spectroscopy of nanoparticles ensembles to characterize optically a single nanostructure. The scattering spectrum of a single gold nanocylinder and the extinction spectrum of a well-chosen array show similar results. We perform an experimental and numerical comparative study to draw parallels between both techniques.
RESUMO
Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE).
Assuntos
Nanoestruturas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman , Ressonância de Plasmônio de SuperfícieRESUMO
Surface-enhanced Raman spectroscopy (SERS) is widely used to sensitively detect molecules or markers in pharmacology, biology, etc. We study numerically the possibility to realize SERS detections directly on a photonic chip. It is presented that a SERS sensor created by combining a gold slot waveguide and a Si3N4 strip waveguide can be designed to excite enhanced Raman effects and extract their scattering signals on a chip. Using 3D finite-difference time-domain simulations, the SERS processes, excitation of surface plasmon in slots and radiation of induced Raman dipoles, are analyzed to simulate SERS detections in reality. It demonstrates the influence of the geometrical parameters on the electromagnetic fields in slots and therefore the local enhancements, based on the |E|4-approximation. The results show that a SERS nanosensor can be achieved based on the hybrid waveguide. The integration of this sensor with a micro-laser and a micro-demultiplexer, could achieve an on-a-chip and fully integrated system for portable and fast SERS detections.
RESUMO
nonresonant surface enhanced Raman scattering by optical phonons of ZnO nanocrystals on and beneath silver and gold island films is reported. For both configurations comparable SERS efficiency is observed, proving their potential utility. Variations in peak intensities can be attributed to difference in the morphology of island films on and beneath nanocrystals as well as to variation of the interface between semiconductor and metal. The dominant peaks in the SERS spectra are assigned to surface optical phonon modes.
RESUMO
The lack of characterization factors (CFs) for engineered nanoparticles (ENPs) hampers the application of life cycle assessment (LCA) methodology in evaluating the potential environmental impacts of nanomaterials. Here, the framework of the USEtox model has been selected to solve this problem. On the basis of colloid science, a fate model for ENPs has been developed to calculate the freshwater fate factor (FF) of ENPs. We also give the recommendations for using the hydrological data from the USEtox model. The functionality of our fate model is proved by comparing our computed results with the reported scenarios in North America, Switzerland, and Europe. As a case study, a literature survey of the nano-Cu toxicology values has been performed to calculate the effect factor (EF). Seventeen freshwater CFs of nano-Cu are proposed as recommended values for subcontinental regions. Depending on the regions and the properties of the ENPs, the region most likely to be affected by nano-Cu is Africa (CF of 11.11 × 10(3) CTUe, comparative toxic units) and the least likely is north Australia (CF of 3.87 × 10(3) CTUe). Furthermore, from the sensitivity analysis of the fate model, 13 input parameters (such as depth of freshwater, radius of ENPs) show vastly different degrees of influence on the outcomes. The characterization of suspended particles in freshwater and the dissolution rate of ENPs are two significant factors.
Assuntos
Cobre , Água Doce , Humanos , Modelos Teóricos , Nanopartículas , NanoestruturasRESUMO
We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.
Assuntos
Coloide de Ouro/síntese química , Nanopartículas Metálicas , Metacrilatos/química , Poliestirenos/química , Nanopartículas Metálicas/ultraestruturaRESUMO
In this Letter, we demonstrate a reversible strong coupling regime between a dipolar surface plasmon resonance and a molecular excited state. This reversible state is experimentally observed on silver nanoparticle arrays embedded in a polymer film containing photochromic molecules. Extinction measurements reveal a clear Rabi splitting of 294 meV, corresponding to ~13% of the molecular transition energy. We derived an analytical model to confirm our observations, and we emphasize the importance of spectrally matching the polymer absorption with the plasmonic resonance to observe coupled states. Finally, the reversibility of this coupling is illustrated by cycling the photochromic molecules between their two isomeric forms.
RESUMO
A seed recovered during archaeological excavations of a cave in the Judean desert was germinated, with radiocarbon analysis indicating an age of 993 CE- 1202 calCE. DNA sequencing and phylogenetic analysis identified the seedling as belonging to the angiosperm genus Commiphora Jacq., sister to three Southern African Commiphora species, but unique from all other species sampled to date. The germinated seedling was not closely related to Commiphora species commonly harvested for their fragrant oleoresins including Commiphora gileadensis (L.) C.Chr., candidate for the locally extinct "Judean Balsam" or "Balm of Gilead" of antiquity. GC-MS analysis revealed minimal fragrant compounds but abundance of those associated with multi-target bioactivity and a previously undescribed glycolipid compound series. Several hypotheses are offered to explain the origins, implications and ethnobotanical significance of this unknown Commiphora sp., to the best of our knowledge the first identified from an archaeological site in this region, including identification with a resin producing tree mentioned in Biblical sources and possible agricultural relationship with the historic Judean Balsam.