RESUMO
Mesenchymal stem cells (MSCs) are classified as advanced therapy medicinal products, a new category of GMP (good manufacturing practice)-compliant medicines for clinical use. We isolated MSCs from 5 bone marrow (BM) samples using human platelet lysate (HPL) instead of foetal bovine serum (FBS). We used a new method of HPL production consisting of treating platelet (PLTs) pools with Ca-Gluconate to form a gel clot, then mechanically squeezing to release growth factors. We compared the new HPL (HPL-S) with the standard (HPL-E) obtained by freezing/thawing cycles and by adding heparin. HPL-S had not PLTs and fibrinogen but the quantity of proteins and growth factors was comparable to HPL-E. Therefore, HPL-S needed fewer production steps to be in compliance with GMP conditions. The number of colonies forming unit-fibroblasts (CFU-F) and the maintenance of stem markers showed no significant differences between MSCs with HPL-E and HPL-S. The cumulative population doubling was higher in MSCs with HPL-E in the earlier passages, but we observed an inverted trend of cell growth at the fourth passage. Immunophenotypic analysis showed a significant lower expression of HLA-DR in the MSCs with HPL-S (1.30%) than HPL-E (14.10%). In conclusion, we demonstrated that HPL-S is an effective alternative for MSC production under GMP conditions.
Assuntos
Células-Tronco Mesenquimais , Plaquetas/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura/metabolismo , Humanos , Imunofenotipagem , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/metabolismoRESUMO
OBJECTIVE: The human endogenous retroviruses (HERVs) are endogenous retroviruses that were inserted into the germ cell DNA of humans over 30 million years ago. Insertion of HERVs into the chromosomal DNA can influence a number of host genes in various modes during human evolution and their proviral long terminal repeats can participate in the transcriptional regulation of various cellular genes. Our aim was to evaluate the pol gene expression of HERV-K and HERV-H in mesenchymal stem cells (MSCs) in relation with the expression of stemness genes such as NANOG, OCT-4, and SOX-2. METHODS: MSCs were isolated from bone marrow of healthy donors and expanded until the 5th passage in α-MEM with 10% fetal bovine serum. HERV-K, HERV-H pol gene, NANOG, OCT-4, SOX-2, and GAPDH expression was quantified by real-time PCR in MSCs during the expansion. RESULTS: HERV-K and HERV-H expression was always higher at p1 compared to other passages and this difference reached a high statistical significance when passage p1 was compared with passage 3. In addition, NANOG, OCT-4, and SOX-2 expression at p1 was significantly higher than their expression at p3. Pearson's test demonstrated a strong correlation between the expression of HERV-K and HERV-H and the expression of NANOG, OCT-4, and SOX-2. CONCLUSIONS: Our findings showed that HERV-K and H were concurrently expressed with pluripotency biomarkers NANOG, OCT-4, and SOX-2.
Assuntos
Retrovirus Endógenos/genética , Expressão Gênica , Genes pol , Células-Tronco Mesenquimais/virologia , Biomarcadores , Humanos , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição SOXB1/genéticaRESUMO
BACKGROUND: Cytokine-induced killer (CIK) cells are a very promising cell population raising growing interest in the field of cellular antitumor therapy. The aim of our study was to validate the most advantageous expansion method for this advanced therapy medicinal product (ATMP) and to translate it from preclinical field to good manufacturing practices (GMP). GMP ensures that ATMP are consistently produced and controlled to the quality standards required to their intended use. For this reason, the use of the xenogenic sera tended to be minimized by GMP for their high variability and the associated risk of transmitting infectious agents. RESULTS: We decided to replace Fetal Bovine Serum (FBS), largely used as medium supplement for CIKs expansion, with other culture media. Firstly, Human Serum (HS) and Human Pool Plasma (HPP) were tested as medium supplements giving not compliant results to acceptance criteria, established for CIKs, probably for the great batch to batch variability. Consequently, we decided to test three different serum free expansion media: X-VIVO 15, (largely used by other groups) and Tex Macs and Cell Genix GMP SCGM: two GMP manufactured media. We performed a validation consisting in three run-sand even if the small number of experiments didn't permit us to obtained statistical results we demonstrated that both X-VIVO 15 and Tex Macs fulfilled the quality standards in terms of cellular growth, viability and identity while Cell Genix GMP SCGM resulted not compliant as it caused some technical problems such as high mortality. CONCLUSION: In conclusion, these preclinical validation data lay the bases for a GMP-compliant process to improve the CIKs expansion method.
Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Citocinas/química , Células Matadoras Naturais/citologia , Soro/química , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Meios de Cultura , Meios de Cultura Livres de Soro , Humanos , Leucócitos Mononucleares/citologiaRESUMO
Following publication of the original article [1], the authors reported that all of the authors' names were processed incorrectly so that their given and family names were interchanged. In this Correction the correct author names are shown. The original publication of this article has been corrected.
RESUMO
The mesenchymal stem cell (MSC) role after allogeneic hematopoietic stem cell transplantation (HSCT) is still a matter of debate; in particular, MSC engraftment in recipient bone marrow (BM) is unclear. A total of 46 patients were analyzed for MSC and hemopoietic stem cell engraftment after HSCT. The majority of patients had the BM as the stem cell source, and acute leukemia was the main indication for HSCT. Mesenchymal and hematopoietic stem cell chimerism analysis was carried out through specific polymorphic tandemly repeated regions. All patients reached complete donor engraftment; no evidence of donor-derived MSC engraftment was noted. Our data indicate that MSCs after HSCT remain of recipient origin despite the following: (i) myeloablative conditioning; (ii) the stem cell source; (iii) the interval from HSCT to BM analysis; (iv) the underlying disease before HSCT; and (v) the patients' or the donors' age at HSCT.
Assuntos
Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Quimeras de Transplante/metabolismo , Adolescente , Adulto , Idoso , Aloenxertos , Criança , Pré-Escolar , Feminino , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapiaRESUMO
The primary aim of this systematic analysis is to highlight opportunities to improve the environmental impact of advanced therapy medicinal products (ATMP) manufacturing. We have compared the Greenhouse Gas (GHG) emissions expressed in CO2eq of a classic clean room open system (AinB) Cell Factory versus a comparable closed system equipped with isolators (AinD). We have therefore outlined a theoretical situation to simulate the use of a closed system with an equivalent production output to that obtained in the Cell Factory (CF) of the Regina Margherita Children's Hospital. Open and closed systems for ATMPs have been compared as regards energy requirements, ecological footprints, and costs by analyzing a hypothetic cell production cycle of 21 days. The results demonstrate energy saving and a reduction of 52% in GHG emissions using closed systems per process cycle. Moreover, a reduction in production costs in an isolator setting is also evident. This study shows that the closed system solution has evident advantages compared with the open one.
RESUMO
Mesenchymal stromal cells (MSCs) isolated from bone marrow (BM-MSCs) are considered advanced therapy medicinal products (ATMPs) and need to be produced according to good manufacturing practice (GMP) in their clinical use. Human platelet lysate (HPL) is a good GMP-compliant alternative to animal serum, and we have demonstrated that after pathogen inactivation with psoralen, it was safer and more efficient to use psoralen in the production of MSCs following GMP guidelines. In this study, the MSCs cultivated in fetal bovine serum (FBS-MSC) or inactivated HPL (iHPL-MSC) were compared for their immunomodulatory properties. We studied the effects of MSCs on (1) the proliferation of total lymphocytes (Ly) and on naïve T Ly subsets induced to differentiate in Th1 versus Th2 Ly; (2) the immunophenotype of different T-cell subsets; (3) and the cytokine release to verify Th1, Th2, and Th17 polarization. These were analyzed by using an in vitro co-culture system. We observed that iHPL-MSCs showed the same immunomodulatory properties observed in the FBS-MSC co-cultures. Furthermore, a more efficient effect on the increase of naïve T- cells and in the Th1 cytokine release from iHPL was observed. This study confirms that iHPL, used as a medium supplement, may be considered a good alternative to FBS for a GMP-compliant MSC expansion, and also to preserve their immunomodulatory proprieties.
RESUMO
Cytokine-induced killer (CIK) cells are advanced therapy medicinal products, so their production and freezing process has to be validated before their clinical use, to verify their stability as a drug formulation according to the good manufacturing practice (GMP) guidelines. We designed a stability program for our GMP-manufactured CIK cells, evaluating the viability, identity and potency of cryopreserved CIK cells at varying time periods from freezing, and compared them with fresh CIK cells. We evaluated the effects of the cryopreservation method, transportation, and the length of time of different process phases (pre-freezing, freezing and post-thawing) on the stability of CIK cells. This included a worst case for each stage. The expanded CIK cells were viable for up to 30 min from the addition of the freezing solution, when transported on dry ice within 48 h once frozen, within 60 min from thawing and from 12 months of freezing while preserving their cytotoxic effects. The reference samples, cryopreserved simultaneously in tubes and following the same method, were considered representative of the batch and useful in the case of further analysis. Data obtained from this drug stability program can inform the accurate use of CIK cells in clinical settings.
RESUMO
BACKGROUND: No standard chemotherapy is available for anaplastic thyroid cancer (ATC). Drug-loaded nanobubbles (NBs) are a promising innovative anticancer drug formulation, and combining them with an externally applied trigger may further control drug release at the target region. Extracorporeal shock waves (ESWs) are acoustic waves widely used in urology and orthopedics, with no side effects. The aim of the present work was to combine ESWs and new doxorubicin-loaded glycol chitosan NBs in order to target doxorubicin and enhance its antitumor effect in ATC cell lines. METHODS: CAL-62 and 8305C cells were treated with empty NBs, fluorescent NBs, free doxorubicin, and doxorubicin-loaded NBs in the presence or in the absence of ESWs. NB entrance was evaluated by fluorescence microscopy and flow cytofluorimetry. Cell viability was assessed by Trypan Blue exclusion and WST-1 proliferation assays. Doxorubicin intracellular content was measured by high-performance liquid chromatography. RESULTS: Treatment with empty NBs and ESWs, even in combination, was safe, as cell viability and growth were not affected. Loading NBs with doxorubicin and combining them with ESWs generated the highest cytotoxic effect, resulting in drug GI50 reduction of about 40%. Mechanistically, ESWs triggered intracellular drug release from NBs, resulting in the highest nuclear drug content. CONCLUSIONS: Combined treatment with doxorubicin-loaded NBs and ESWs is a promising drug delivery tool for ATC treatment with the possibility of using lower doxorubicin doses and thus limiting its systemic side effects.