Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Comput Biol ; 19(3): e1010154, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947561

RESUMO

Missing observations in trait datasets pose an obstacle for analyses in myriad biological disciplines. Considering the mixed results of imputation, the wide variety of available methods, and the varied structure of real trait datasets, a framework for selecting a suitable imputation method is advantageous. We invoked a real data-driven simulation strategy to select an imputation method for a given mixed-type (categorical, count, continuous) target dataset. Candidate methods included mean/mode imputation, k-nearest neighbour, random forests, and multivariate imputation by chained equations (MICE). Using a trait dataset of squamates (lizards and amphisbaenians; order: Squamata) as a target dataset, a complete-case dataset consisting of species with nearly complete information was formed for the imputation method selection. Missing data were induced by removing values from this dataset under different missingness mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). For each method, combinations with and without phylogenetic information from single gene (nuclear and mitochondrial) or multigene trees were used to impute the missing values for five numerical and two categorical traits. The performances of the methods were evaluated under each missing mechanism by determining the mean squared error and proportion falsely classified rates for numerical and categorical traits, respectively. A random forest method supplemented with a nuclear-derived phylogeny resulted in the lowest error rates for the majority of traits, and this method was used to impute missing values in the original dataset. Data with imputed values better reflected the characteristics and distributions of the original data compared to complete-case data. However, caution should be taken when imputing trait data as phylogeny did not always improve performance for every trait and in every scenario. Ultimately, these results support the use of a real data-driven simulation strategy for selecting a suitable imputation method for a given mixed-type trait dataset.


Assuntos
Projetos de Pesquisa , Filogenia , Simulação por Computador , Fenótipo , Análise por Conglomerados
2.
Nucleic Acids Res ; 50(16): 9279-9293, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979944

RESUMO

Metagenomics and total RNA sequencing (total RNA-Seq) have the potential to improve the taxonomic identification of diverse microbial communities, which could allow for the incorporation of microbes into routine ecological assessments. However, these target-PCR-free techniques require more testing and optimization. In this study, we processed metagenomics and total RNA-Seq data from a commercially available microbial mock community using 672 data-processing workflows, identified the most accurate data-processing tools, and compared their microbial identification accuracy at equal and increasing sequencing depths. The accuracy of data-processing tools substantially varied among replicates. Total RNA-Seq was more accurate than metagenomics at equal sequencing depths and even at sequencing depths almost one order of magnitude lower than those of metagenomics. We show that while data-processing tools require further exploration, total RNA-Seq might be a favorable alternative to metagenomics for target-PCR-free taxonomic identifications of microbial communities and might enable a substantial reduction in sequencing costs while maintaining accuracy. This could be particularly an advantage for routine ecological assessments, which require cost-effective yet accurate methods, and might allow for the incorporation of microbes into ecological assessments.


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Microbiota/genética , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética
3.
J Mol Evol ; 88(8-9): 689-702, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33009923

RESUMO

Myriad environmental and biological traits have been investigated for their roles in influencing the rate of molecular evolution across various taxonomic groups. However, most studies have focused on a single trait, while controlling for additional factors in an informal way, generally by excluding taxa. This study utilized a dataset of cytochrome c oxidase subunit I (COI) barcode sequences from over 7000 ray-finned fish species to test the effects of 27 traits on molecular evolutionary rates. Environmental traits such as temperature were considered, as were traits associated with effective population size including body size and age at maturity. It was hypothesized that these traits would demonstrate significant correlations with substitution rate in a multivariable analysis due to their associations with mutation and fixation rates, respectively. A bioinformatics pipeline was developed to assemble and analyze sequence data retrieved from the Barcode of Life Data System (BOLD) and trait data obtained from FishBase. For use in phylogenetic regression analyses, a maximum likelihood tree was constructed from the COI sequence data using a multi-gene backbone constraint tree covering 71% of the species. A variable selection method that included both single- and multivariable analyses was used to identify traits that contribute to rate heterogeneity estimated from different codon positions. Our analyses revealed that molecular rates associated most significantly with latitude, body size, and habitat type. Overall, this study presents a novel and systematic approach for integrative data assembly and variable selection methodology in a phylogenetic framework.


Assuntos
Código de Barras de DNA Taxonômico , Evolução Molecular , Peixes , Animais , Meio Ambiente , Peixes/classificação , Peixes/genética , Fenótipo , Filogenia
4.
Genome ; 63(6): 291-305, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406757

RESUMO

Biological conclusions based on DNA barcoding and metabarcoding analyses can be strongly influenced by the methods utilized for data generation and curation, leading to varying levels of success in the separation of biological variation from experimental error. The 5' region of cytochrome c oxidase subunit I (COI-5P) is the most common barcode gene for animals, with conserved structure and function that allows for biologically informed error identification. Here, we present coil ( https://CRAN.R-project.org/package=coil ), an R package for the pre-processing and frameshift error assessment of COI-5P animal barcode and metabarcode sequence data. The package contains functions for placement of barcodes into a common reading frame, accurate translation of sequences to amino acids, and highlighting insertion and deletion errors. The analysis of 10 000 barcode sequences of varying quality demonstrated how coil can place barcode sequences in reading frame and distinguish sequences containing indel errors from error-free sequences with greater than 97.5% accuracy. Package limitations were tested through the analysis of COI-5P sequences from the plant and fungal kingdoms as well as the analysis of potential contaminants: nuclear mitochondrial pseudogenes and Wolbachia COI-5P sequences. Results demonstrated that coil is a strong technical error identification method but is not reliable for detecting all biological contaminants.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Pseudogenes/genética , Animais , DNA Mitocondrial/genética , Mutação da Fase de Leitura/genética , Humanos
5.
Heredity (Edinb) ; 122(5): 513-524, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30202084

RESUMO

The evolutionary speed hypothesis (ESH) suggests that molecular evolutionary rates are higher among species inhabiting warmer environments. Previously, the ESH has been investigated using small numbers of latitudinally-separated sister lineages; in animals, these studies typically focused on subsets of Chordata and yielded mixed support for the ESH. This study analyzed public DNA barcode sequences from the cytochrome c oxidase subunit I (COI) gene for six of the largest animal phyla (Arthropoda, Chordata, Mollusca, Annelida, Echinodermata, and Cnidaria) and paired latitudinally-separated taxa together informatically. Of 8037 lineage pairs, just over half (51.6%) displayed a higher molecular rate in the lineage inhabiting latitudes closer to the equator, while the remainder (48.4%) displayed a higher rate in the higher-latitude lineage. To date, this study represents the most comprehensive analysis of latitude-related molecular rate differences across animals. While a statistically-significant pattern was detected from our large sample size, our findings suggest that the EHS may not serve as a strong universal mechanism underlying the latitudinal diversity gradient and that COI molecular clocks may generally be applied across latitudes. This study also highlights the merits of using automation to analyze large DNA barcode datasets.


Assuntos
Evolução Molecular , Clima Tropical , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Geografia , Invertebrados/classificação , Invertebrados/genética , Modelos Lineares , Filogenia
6.
Genome ; 62(3): 200-216, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30461309

RESUMO

Divergence times for species assemblages of Arctic marine invertebrates have often been estimated using a standard rate (1.4%/MY) of molecular evolution calibrated using a single sister pair of tropical crustaceans. Because rates of molecular evolution vary among taxa and environments, it is essential to obtain clock calibrations from northern lineages. The recurrent opening and closure of the Bering Strait provide an exceptional opportunity for clock calibration. Here, we apply the iterative calibration approach to investigate patterns of molecular divergence among lineages of northern marine molluscs and arthropods using publicly available sequences of the cytochrome c oxidase subunit I (COI) gene and compare these results with previous estimates of trans-Bering divergences for echinoderms and polychaetes. The wide range of Kimura two-parameter (K2P) divergences among 73 trans-Bering sister pairs (0.12%-16.89%) supports multiple pulses of migration through the Strait. Overall, the results indicate a rate of K2P divergence of 3.2%/MY in molluscs, 5%-5.2%/MY in arthropods, and 3.5%-4.7%/MY in polychaetes. While these rates are considerably higher than the often-adopted 1.4%/MY rate, they are similar to calibrations (3%-5%/MY) in several other studies of marine invertebrates. This upward revision in rates means there is a need both to reevaluate the evolutionary history of marine lineages and to reexamine the impact of prior climatic changes upon the diversification of marine life.


Assuntos
Artrópodes/genética , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Evolução Molecular , Variação Genética , Moluscos/genética , Poliquetos/genética , Animais , DNA/análise , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia
7.
J Mol Evol ; 86(2): 118-137, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29429061

RESUMO

During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.


Assuntos
Equinodermos/genética , Taxa de Mutação , Filogeografia/métodos , Animais , Evolução Biológica , Calibragem , Evolução Molecular , Fósseis , Filogenia
8.
Mol Phylogenet Evol ; 125: 232-242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545110

RESUMO

Ancient lakes are renowned for their exceptional diversity of endemic species. As model systems for the study of sympatric speciation, it is necessary to understand whether a given hypothesized species flock is of monophyletic or polyphyletic origin. Here, we present the first molecular characterization of the Hyalella (Crustacea: Amphipoda) species complex of Lake Titicaca, using COI and 28S DNA sequences, including samples from the connected Small and Large Lakes that comprise Lake Titicaca as well as from a broader survey of southern South American sites. At least five evolutionarily distant lineages are present within Lake Titicaca, which were estimated to have diverged from one another 12-20 MYA. These major lineages are dispersed throughout the broader South American Hyalella phylogeny, with each lineage representing at least one independent colonization of the lake. Moreover, complex genetic relationships are revealed between Lake Titicaca individuals and those from surrounding water bodies, which may be explained by repeated dispersal into and out of the lake, combined with parallel intralacustrine diversification within two separate clades. Although further work in deeper waters will be required to determine the number of species present and modes of diversification, our results strongly indicate that this amphipod species cloud is polyphyletic with a complex geographic history.


Assuntos
Anfípodes/fisiologia , Lagos , Anfípodes/genética , Animais , Teorema de Bayes , Biodiversidade , Intervalos de Confiança , Especiação Genética , Geografia , Funções Verossimilhança , Filogenia , Especificidade da Espécie , Simpatria , Fatores de Tempo
9.
Genome ; 61(11): 787-796, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30365909

RESUMO

Chironomid flies (non-biting midges) are among the most abundant and diverse animals in Arctic regions, but detailed analyses of species distributions and biogeographical patterns are hampered by challenging taxonomy and reliance on morphology for species-level identification. Here we take advantage of available DNA barcode data of Arctic Chironomidae in BOLD to analyse similarities in species distributions across a northern Nearctic - West Palearctic gradient. Using more than 260 000 barcodes representing 4666 BINs (Barcode Index Numbers) and 826 named species (some with interim names) from a combination of public and novel data, we show that the Greenland chironomid fauna shows affinities to both the Nearctic and the West Palearctic regions. While raw taxon counts indicate a strong Greenland - North American affinity, comparisons using Chao's dissimilarity metric support a slightly higher similarity between Greenland and West Palearctic chironomid communities. Results were relatively consistent across different definitions of species taxonomic units, including morphologically determined species, BINs, and superBINs based on a ∼4.5% threshold. While most taxa found in Greenland are shared with at least one other region, reflecting circum-Arctic dispersal, our results also reveal that Greenland harbours a small endemic biodiversity. Our exploratory study showcases how DNA barcoding efforts using standardized gene regions contribute to an understanding of broad-scale patterns in biogeography by enabling joint analysis of public DNA sequence data derived from diverse prior studies.


Assuntos
Chironomidae/classificação , Código de Barras de DNA Taxonômico , Animais , Regiões Árticas , Biodiversidade , Chironomidae/genética , Feminino , Masculino , Filogeografia
10.
New Phytol ; 214(1): 11-18, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27901268

RESUMO

While pollinators are widely acknowledged as important contributors to seed production in plant communities, we do not yet have a good understanding of the importance of pollinator specialists for this ecosystem service. Determination of the prevalence of pollinator specialists is often hindered by the occurrence of cryptic species and the limitations of observational data on pollinator visitation rates, two areas where DNA barcoding of pollinators and pollen can be useful. Further, the demonstrated adequacy of pollen DNA barcoding from historical records offers opportunities to observe the effects of pollinator loss over longer timescales, and phylogenetic approaches can elucidate the historical rates of extinction of specialist lineages. In this Viewpoint article, we review how advances in DNA barcoding and metabarcoding of plants and pollinators have brought important developments to our understanding of specialization in plant-pollinator interactions. We then put forth several lines of inquiry that we feel are especially promising for providing insight on changes in plant-pollinator interactions over space and time. Obtaining estimates of the effects of reductions in specialists will contribute to forecasting the loss of ecosystem services that will accompany the erosion of plant and pollinator diversity.


Assuntos
Evolução Biológica , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Polinização/fisiologia , Plantas , Fatores de Tempo
11.
Genome ; 60(11): 875-879, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29130757

RESUMO

Participants in the 7th International Barcode of Life Conference (Kruger National Park, South Africa, 20-24 November 2017) share the latest findings in DNA barcoding research and its increasingly diversified applications. Here, we review prevailing trends synthesized from among 429 invited and contributed abstracts, which are collated in this open-access special issue of Genome. Hosted for the first time on the African continent, the 7th Conference places special emphasis on the evolutionary origins, biogeography, and conservation of African flora and fauna. Within Africa and elsewhere, DNA barcoding and related techniques are being increasingly used for wildlife forensics and for the validation of commercial products, such as medicinal plants and seafood species. A striking trend of the conference is the dramatic rise of studies on environmental DNA (eDNA) and on diverse uses of high-throughput sequencing techniques. Emerging techniques in these areas are opening new avenues for environmental biomonitoring, managing species-at-risk and invasive species, and revealing species interaction networks in unprecedented detail. Contributors call for the development of validated community standards for high-throughput sequence data generation and analysis, to enable the full potential of these methods to be realized for understanding and managing biodiversity on a global scale.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Evolução Molecular , Animais , Biologia Computacional , Congressos como Assunto , Conservação dos Recursos Naturais , Sequenciamento de Nucleotídeos em Larga Escala , Lepidópteros/genética , Filogeografia , Plantas Medicinais/genética , África do Sul
12.
Genome ; 60(2): 169-182, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28094568

RESUMO

DNA barcoding has been used successfully for identifying specimens belonging to marine planktonic groups. However, the ability to delineate species within taxonomically diverse and widely distributed marine groups, such as the Copepoda and Thecostraca, remains largely untested. We investigate whether a cytochrome c oxidase subunit I (COI-5P) global pairwise sequence divergence threshold exists between intraspecific and interspecific divergences in the copepods plus the thecostracans (barnacles and allies). Using publicly accessible sequence data, we applied a graphical method to determine an optimal threshold value. With these thresholds, and using a newly generated planktonic marine data set, we quantify the degree of concordance using a bidirectional analysis and discuss different analytical methods for sequence-based species delimitation (e.g., BIN, ABGD, jMOTU, UPARSE, Mothur, PTP, and GMYC). Our results support a COI-5P threshold between 2.1% and 2.6% p-distance across methods for these crustacean taxa, yielding molecular groupings largely concordant with traditional, morphologically defined species. The adoption of internal methods for clustering verification enables rapid biodiversity studies and the exploration of unknown faunas using DNA barcoding. The approaches taken here for concordance assessment also provide a more quantitative comparison of clustering results (as contrasted with "success/failure" of barcoding), and we recommend their further consideration for barcoding studies.


Assuntos
Copépodes/classificação , Copépodes/genética , Código de Barras de DNA Taxonômico , Animais , Biodiversidade , Canadá , Análise por Conglomerados , Copépodes/anatomia & histologia , Variação Genética , Geografia , Fenótipo , Filogenia
13.
Genome ; 59(11): 968-980, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27767335

RESUMO

Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, pbinomial = 0.15, pWilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.


Assuntos
Biodiversidade , Evolução Molecular , Insetos/classificação , Insetos/genética , Animais , Código de Barras de DNA Taxonômico , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético , Água Doce/parasitologia , Insetos/metabolismo , Filogenia , Densidade Demográfica
14.
Genome ; 59(12): 1130-1140, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27845571

RESUMO

Additive diversity partitioning (α, ß, and γ) is commonly used to study the distribution of species-level diversity across spatial scales. Here, we first investigate whether published studies of additive diversity partitioning show signs of difficulty attaining species-level resolution due to inherent limitations with morphological identifications. Second, we present a DNA barcoding approach to delineate specimens of stream caddisfly larvae (order Trichoptera) and consider the importance of taxonomic resolution on classical (additive) measures of beta (ß) diversity. Caddisfly larvae were sampled using a hierarchical spatial design in two regions (subarctic Churchill, Manitoba, Canada; temperate Pennsylvania, USA) and then additively partitioned according to Barcode Index Numbers (molecular clusters that serve as a proxy for species), genus, and family levels; diversity components were expressed as proportional species turnover. We screened 114 articles of additive diversity partitioning and found that a third reported difficulties with achieving species-level identifications, with a clear taxonomic tendency towards challenges identifying invertebrate taxa. Regarding our own study, caddisfly BINs appeared to show greater subregional turnover (e.g., proportional additive ß) compared to genus or family levels. Diversity component studies failing to achieve species resolution due to morphological identifications may therefore be underestimating diversity turnover at larger spatial scales.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Insetos/classificação , Insetos/genética , Animais , Manitoba , Pennsylvania
15.
Genome ; 58(5): 151-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26444714

RESUMO

The 6th International Barcode of Life Conference (Guelph, Canada, 18-21 August 2015), themed Barcodes to Biomes, showcases the latest developments in DNA barcoding research and its diverse applications. The meeting also provides a venue for a global research community to share ideas and to initiate collaborations. All plenary and contributed abstracts are being published as an open-access special issue of Genome. Here, I use a comparison with the 3rd Conference (Mexico City, 2009) to highlight 10 recent and emerging trends that are apparent among the contributed abstracts. One of the outstanding trends is the rising proportion of abstracts that focus upon multiple socio-economically important applications of DNA barcoding, including studies of agricultural pests, quarantine and invasive species, wildlife forensics, disease vectors, biomonitoring of ecosystem health, and marketplace surveys evaluating the authenticity of seafood products and medicinal plants. Other key movements include the use of barcoding and metabarcoding approaches for dietary analyses-and for studies of food webs spanning three or more trophic levels-as well as the spread of next-generation sequencing methods in multiple contexts. In combination with the rising taxonomic and geographic scope of many barcoding iniatives, these developments suggest that several important questions in biology are becoming tractable. "What is this specimen on an agricultural shipment?", "Who eats whom in this whole food web?", and even "How many species are there?" are questions that may be answered in time periods ranging from a few years to one or a few decades. The next phases of DNA barcoding may expand yet further into prediction of community shifts with climate change and improved management of biological resources.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Animais , Biodiversidade , Monitorização de Parâmetros Ecológicos , Humanos
16.
Genome ; 58(12): 519-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642251

RESUMO

DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.


Assuntos
Código de Barras de DNA Taxonômico , Pesquisa em Genética , Saúde Global , Participação Social , Código de Barras de DNA Taxonômico/métodos , Bases de Dados Genéticas , Humanos , Metanálise como Assunto
18.
Proc Biol Sci ; 280(1767): 20131128, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-23884090

RESUMO

The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne.


Assuntos
Evolução Molecular , Voo Animal , Insetos/fisiologia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Insetos/citologia , Insetos/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
19.
BMC Ecol ; 13: 44, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279427

RESUMO

BACKGROUND: Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. RESULTS: 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10-20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA. The first description of the female of S. monticola was also presented. As well, one probable new species of Alopecosa (Lycosidae) was recognized. CONCLUSIONS: This study provides the first comprehensive DNA barcode reference library for the spider fauna of any region. Few cryptic species of spiders were detected, a result contrasting with the prevalence of undescribed species in several other terrestrial arthropod groups at Churchill. Because most (97.5%) sequence clusters at COI corresponded with a named taxon, DNA barcoding reliably identifies spiders in the Churchill fauna. The capacity of DNA barcoding to enable the identification of otherwise taxonomically ambiguous specimens (juveniles, females) also represents a major advance for future monitoring efforts on this group.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Filogenia , Aranhas/classificação , Animais , Regiões Árticas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Biblioteca Gênica , Genes Mitocondriais , Masculino , Manitoba , Aranhas/anatomia & histologia , Aranhas/genética
20.
BMC Ecol ; 13: 13, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557180

RESUMO

BACKGROUND: Biodiversity surveys have long depended on traditional methods of taxonomy to inform sampling protocols and to determine when a representative sample of a given species pool of interest has been obtained. Questions remain as to how to design appropriate sampling efforts to accurately estimate total biodiversity. Here we consider the biodiversity of freshwater ostracods (crustacean class Ostracoda) from the region of Churchill, Manitoba, Canada. Through an analysis of observed species richness and complementarity, accumulation curves, and richness estimators, we conduct an a posteriori analysis of five bioblitz-style collection strategies that differed in terms of total duration, number of sites, protocol flexibility to heterogeneous habitats, sorting of specimens for analysis, and primary purpose of collection. We used DNA barcoding to group specimens into molecular operational taxonomic units for comparison. RESULTS: Forty-eight provisional species were identified through genetic divergences, up from the 30 species previously known and documented in literature from the Churchill region. We found differential sampling efficiency among the five strategies, with liberal sorting of specimens for molecular analysis, protocol flexibility (and particularly a focus on covering diverse microhabitats), and a taxon-specific focus to collection having strong influences on garnering more accurate species richness estimates. CONCLUSIONS: Our findings have implications for the successful design of future biodiversity surveys and citizen-science collection projects, which are becoming increasingly popular and have been shown to produce reliable results for a variety of taxa despite relying on largely untrained collectors. We propose that efficiency of biodiversity surveys can be increased by non-experts deliberately selecting diverse microhabitats; by conducting two rounds of molecular analysis, with the numbers of samples processed during round two informed by the singleton prevalence during round one; and by having sub-teams (even if all non-experts) focus on select taxa. Our study also provides new insights into subarctic diversity of freshwater Ostracoda and contributes to the broader "Barcoding Biotas" campaign at Churchill. Finally, we comment on the associated implications and future research directions for community ecology analyses and biodiversity surveys through DNA barcoding, which we show here to be an efficient technique enabling rapid biodiversity quantification in understudied taxa.


Assuntos
Biodiversidade , Crustáceos/classificação , Crustáceos/genética , Água Doce/parasitologia , Animais , DNA/genética , Código de Barras de DNA Taxonômico/métodos , Manitoba , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA