Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421099

RESUMO

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Assuntos
Estudo de Associação Genômica Ampla , Somatotipos , Animais , Truta/genética , Genômica , Locos de Características Quantitativas/genética
2.
J Fish Biol ; 104(1): 265-283, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843923

RESUMO

The freshwater phase of the first seaward migration of juvenile Atlantic salmon (Salmo salar) is relatively well understood when compared with our understanding of the marine phase of their migration. In 2021, 1008 wild and 60 ranched Atlantic salmon smolts were tagged with acoustic transmitters in 12 rivers in England, Scotland, Northern Ireland and Ireland. Large marine receiver arrays were deployed in the Irish Sea at two locations: at the transition of the Irish Sea into the North Atlantic between Ireland and Scotland, and between southern Scotland and Northern Ireland, to examine the early phase of the marine migration of Atlantic salmon smolts. After leaving their natal rivers' post-smolt migration through the Irish Sea was rapid with minimum speeds ranging from 14.03 to 38.56 km.day-1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal river, to 9.69-39.94 km.day-1 for Atlantic salmon smolts that entered the Irish Sea directly from their natal estuary. Population minimum migration success through the study area was strongly correlated with the distance of travel, populations further away from the point of entry to the open North Atlantic exhibited lower migration success. Post-smolts from different populations experienced different water temperatures on entering the North Atlantic. This was largely driven by the timing of their migration and may have significant consequences for feeding and ultimately survivorship. The influence of water currents on post-smolt movement was investigated using data from previously constructed numerical hydrodynamic models. Modeled water current data in the northern Irish Sea showed that post-smolts had a strong preference for migrating when the current direction was at around 283° (west-north-west) but did not migrate when exposed to strong currents in other directions. This is the most favorable direction for onward passage from the Irish Sea to the continental shelf edge current, a known accumulation point for migrating post-smolts. These results strongly indicate that post-smolts migrating through the coastal marine environment are: (1) not simply migrating by current following (2) engage in active directional swimming (3) have an intrinsic sense of their migration direction and (4) can use cues other than water current direction to orientate during this part of their migration.


Assuntos
Rios , Salmo salar , Animais , Sinais (Psicologia) , Migração Animal , Água
3.
J Fish Biol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679466

RESUMO

The migratory behavior of Atlantic salmon (Salmo salar) post-smolts in coastal waters is poorly understood. In this collaborative study, 1914 smolts, from 25 rivers, in four countries were tagged with acoustic transmitters during a single seasonal migration. In total, 1105 post-smolts entered the marine study areas and 438 (39.6%) were detected on a network of 414 marine acoustic receivers and an autonomous underwater vehicle. Migration pathways (defined as the shortest distance between two detections) of up to 575 km and over 100 days at sea were described for all 25 populations. Post-smolts from different rivers, as well as individuals from the same river, used different pathways in coastal waters. Although difficult to generalize to all rivers, at least during the year of this study, no tagged post-smolts from rivers draining into the Irish Sea were detected entering the areas of sea between the Hebrides and mainland Scotland, which is associated with a high density of finfish aquaculture. An important outcome of this study is that a high proportion of post-smolts crossed through multiple legislative jurisdictions and boundaries during their migration. This study provides the basis for spatially explicit assessment of the impact risk of coastal pressures on salmon during their first migration to sea.

4.
PLoS Genet ; 16(4): e1008658, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302300

RESUMO

Understanding the extent to which ecological divergence is repeatable is essential for predicting responses of biodiversity to environmental change. Here we test the predictability of evolution, from genotype to phenotype, by studying parallel evolution in a salmonid fish, Arctic charr (Salvelinus alpinus), across eleven replicate sympatric ecotype pairs (benthivorous-planktivorous and planktivorous-piscivorous) and two evolutionary lineages. We found considerable variability in eco-morphological divergence, with several traits related to foraging (eye diameter, pectoral fin length) being highly parallel even across lineages. This suggests repeated and predictable adaptation to environment. Consistent with ancestral genetic variation, hundreds of loci were associated with ecotype divergence within lineages of which eight were shared across lineages. This shared genetic variation was maintained despite variation in evolutionary histories, ranging from postglacial divergence in sympatry (ca. 10-15kya) to pre-glacial divergence (ca. 20-40kya) with postglacial secondary contact. Transcriptome-wide gene expression (44,102 genes) was highly parallel across replicates, involved biological processes characteristic of ecotype morphology and physiology, and revealed parallelism at the level of regulatory networks. This expression divergence was not only plastic but in part genetically controlled by parallel cis-eQTL. Lastly, we found that the magnitude of phenotypic divergence was largely correlated with the genetic differentiation and gene expression divergence. In contrast, the direction of phenotypic change was mostly determined by the interplay of adaptive genetic variation, gene expression, and ecosystem size. Ecosystem size further explained variation in putatively adaptive, ecotype-associated genomic patterns within and across lineages, highlighting the role of environmental variation and stochasticity in parallel evolution. Together, our findings demonstrate the parallel evolution of eco-morphology and gene expression within and across evolutionary lineages, which is controlled by the interplay of environmental stochasticity and evolutionary contingencies, largely overcoming variable evolutionary histories and genomic backgrounds.


Assuntos
Ecótipo , Evolução Molecular , Peixes/anatomia & histologia , Peixes/genética , Expressão Gênica , Variação Genética , Genoma/genética , Animais , Ecologia , Feminino , Deriva Genética , Especiação Genética , Genética Populacional , Genômica , Masculino , Simpatria
5.
J Fish Biol ; 100(4): 860-867, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35212396

RESUMO

There are strong signals that the selection forces favouring the expression of long-distance sea migration by Atlantic salmon (Salmo salar) are changing. Unlike many other behavioural traits, the costs of migration are incurred before any fitness benefits become apparent to the migrant. The expression of this behaviour has thus been shaped by selection forces over multiple generations and cannot respond to short interval (within a single generation) environmental change as many other behavioural traits can. Here we provide a framework to examine the evolutionary and ecological consequences of a sustained increase in migration cost. We argue that Atlantic salmon may have entered an evolutionary trap, where long-distance sea migration has become maladaptive because of shifting environmental conditions. We predict that if higher migration costs (affecting survivorship and ultimately fitness) persist, then shifting selection pressures will result in continuing declines in population size. We suggest, however, that in some populations there is demonstrable capacity for evolutionary rescue responses within the species which is to be found in the variation in the expression of migration. Under a scenario of low to moderate change in the selection forces that previously promoted migration, we argue that disruptive, sex-based selection would result in partial migration, where females retain sea migration but with anadromy loss predominantly in males. With more acute selection forces, anadromy may be strongly selected against, under these conditions both sexes may become freshwater resident. We suggest that as the migration costs appear to be higher in catchments with standing waters, then this outcome is more likely in such systems. We also speculate that as a result of the genetic structuring in this species, not all populations may have the capacity to respond adequately to change. The consequences of this for the species and its management are discussed.


Assuntos
Salmo salar , Animais , Evolução Biológica , Feminino , Masculino , Fenótipo , Densidade Demográfica , Pressão , Salmo salar/genética
6.
J Fish Biol ; 101(5): 1285-1300, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36053776

RESUMO

It is thought that survival during migration is particularly poor for Atlantic salmon post-smolts immediately after entry into sea and particularly in the estuarine environment. Nonetheless, there is currently a lack of information on Atlantic salmon post-smolt movement behaviour in estuaries in the UK. This study used acoustic tagging to estimate loss rates and compare the behaviour of Atlantic salmon post-smolts migrating from two distinctly different rivers draining into the Clyde Estuary, the River Endrick (n = 145) and the Gryffe (n = 102). Contrary to most literature, post-smolts undertook rapid migrations through the estuary, potentially decreasing their exposure to predators/anthropogenic stressors and reducing their estimated loss rates (river: 1%-3% km-1 ; estuary: 0.20%-0.60% km-1 ). The low loss rates in the estuary occurred despite post-smolts engaging in passive reversal movements with the tide upon entering the estuary, possibly allowing them more time to adapt to the increased salinity. Atlantic salmon post-smolts from both the rivers used similar migration pathways exiting into the coastal marine zone during ebbing tide. This study provides novel information on the timing and migratory routes of Atlantic salmon post-smolts in the Clyde Estuary that can ultimately be used to inform management decisions on how to assess and reduce the potential impacts of current natural and anthropogenic stressors. Temporal repeatability of this study over multiple years is required to determine if there is variation in the factors driving the migratory patterns and loss rates of smolts in this system.


Assuntos
Salmo salar , Animais , Migração Animal , Estuários , Rios , Salinidade
7.
Evol Dev ; 23(4): 333-350, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010514

RESUMO

Environmental conditions can impact the development of phenotypes and in turn the performance of individuals. Climate change, therefore, provides a pressing need to extend our understanding of how temperature will influence phenotypic variation. To address this, we assessed the impact of increased temperatures on ecologically significant phenotypic traits in Arctic charr (Salvelinus alpinus). We raised Arctic charr at 5°C and 9°C to simulate a predicted climate change scenario and examined temperature-induced variation in ossification, bone metabolism, skeletal morphology, and escape response. Fish reared at 9°C exhibited less cartilage and bone development at the same developmental stage, but also higher bone metabolism in localized regions. The higher temperature treatment also resulted in significant differences in craniofacial morphology, changes in the degree of variation, and fewer vertebrae. Both temperature regime and vertebral number affected escape response performance, with higher temperature leading to decreased latency. These findings demonstrate that climate change has the potential to impact development through multiple routes with the potential for plasticity and the release of cryptic genetic variation to have strong impacts on function through ecological performance and survival.


Assuntos
Mudança Climática , Truta , Animais , Desenvolvimento Ósseo , Fenótipo , Temperatura , Truta/genética
8.
J Evol Biol ; 34(6): 893-909, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33185292

RESUMO

During evolution, genomes are shaped by a plethora of forces that can leave characteristic signatures. A common goal when studying diverging populations is to detect the signatures of selective sweeps, which can be rather difficult in complex demographic scenarios, such as under secondary contact. Moreover, the detection of selective sweeps, especially in whole-genome data, often relies heavily on a narrow set of summary statistics that are affected by a multitude of factors, frequently leading to false positives and false negatives. Simulating genomic regions makes it possible to control these demographic and population genetic factors. We used simulations of large genomic regions to determine how different secondary contact and sympatric speciation scenarios affect the footprint of hard and soft selective sweeps in the presence of varying degrees of gene flow and recombination. We explored the ability of an array of population genetic summary statistics to detect the footprints of these selective sweeps under specific demographies. We focussed on metrics that do not require phased data or ancestral sequences and therefore have wide applicability. We found that a newly developed beta diversity measure, B¯GD utperformed all other metrics in detecting selective sweeps and that FST also performed well. High accuracy was also found in Δπ and genotype distance-derived metrics. The performance of most metrics strongly depended on factors such as the presence of an allopatric phase, migration rates, recombination, population growth, and whether the sweep was hard or soft. We provide suggestions for locating and analysing the response to selective sweeps in whole-genome data.


Assuntos
Especiação Genética , Genética Populacional/métodos , Genômica/métodos , Modelos Genéticos , Seleção Genética , Estatística como Assunto
9.
J Evol Biol ; 34(12): 1954-1969, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34653264

RESUMO

Pleistocene glaciations dramatically affected species distribution in regions that were impacted by ice cover and subsequent postglacial range expansion impacted contemporary biodiversity in complex ways. The European whitefish, Coregonus lavaretus, is a widely distributed salmonid fish species on mainland Europe, but in Britain it has only seven native populations, all of which are found on the western extremes of the island. The origins and colonization routes of the species into Britain are unknown but likely contributed to contemporary genetic patterns and regional uniqueness. Here, we used up to 25,751 genome-wide polymorphic loci to reconstruct the history and to discern the demographic and evolutionary forces underpinning divergence between British populations. Overall, we found lower genetic diversity in Scottish populations but high differentiation (FST  = 0.433-0.712) from the English/Welsh and other European populations. Differentiation was elevated genome-wide rather than in particular genomic regions. Demographic modelling supported a postglacial colonization into western Scotland from northern refugia and a separate colonization route for the English/Welsh populations from southern refugia, with these two groups having been separated for more than ca. 50 Ky. We found cyto-nuclear discordance at a European scale, with the Scottish populations clustering closely with Baltic population in the mtDNA analysis but not in the nuclear data, and with the Norwegian and Alpine populations displaying the same mtDNA haplotype but being distantly related in the nuclear tree. These findings suggest that neutral processes, primarily drift and regionally distinct pre-glacial evolutionary histories, are important drivers of genomic divergence in British populations of European whitefish. This sheds new light on the establishment of the native British freshwater fauna after the last glacial maximum.


Assuntos
Variação Genética , Salmonidae , Animais , Evolução Biológica , DNA Mitocondrial/genética , Haplótipos , Filogenia , Salmonidae/genética
10.
J Environ Manage ; 262: 110317, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250800

RESUMO

Fishways are commonly employed to improve river connectivity for fishes, but the extent to which they cater for natural phenotypic diversity has been insufficiently addressed. We measured differential upstream passage success of three wild brown trout (Salmo trutta) phenotypes (anadromous, freshwater-resident adult and parr-marked), encompassing a range of sizes and both sexes, at a Larinier superactive baffle fishway adjacent to a flow-gauging weir, using PIT telemetry (n = 160) and radio telemetry (n = 53, double tagged with PIT tags). Fish were captured and tagged downstream of the weir in the autumn pre-spawning period, 2017, in a tributary of the River Wear, England, where over 95% of tributary spawning habitat was available upstream of the weir. Of 57 trout that approached the weir-fishway complex, freshwater-resident adult and parr-marked phenotypes were less successful in passing than anadromous trout (25%, 36%, and 63% passage efficiency, respectively). Seventy-one percent of anadromous trout that passed upstream traversed the weir directly. Although the fishway facilitated upstream passage, it was poor in attracting fish of all phenotypes (overall attraction efficiency, 22.8%). A higher proportion (68.2%) of parr-marked trout that approached the weir were male and included sexually mature individuals, compared with that of freshwater-resident (37.8%) and anadromous trout (37.0%). The greater passage success of anadromous trout was likely due to their greater size and locomotory performance compared to the other phenotypes. Barriers and fishways can act as selection filters, likely the case in this study, and greater consideration needs to be given to supporting natural diversity in populations when proposing fishway designs to mitigate river connectivity problems.


Assuntos
Rios , Truta , Animais , Ecossistema , Inglaterra , Feminino , Masculino , Fenótipo
11.
BMC Genomics ; 20(1): 1010, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870285

RESUMO

BACKGROUND: Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. RESULTS: All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. CONCLUSIONS: Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.


Assuntos
Perfilação da Expressão Gênica , Salmonidae/genética , Seleção Genética , Animais , Evolução Molecular
12.
BMC Genomics ; 19(1): 32, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310597

RESUMO

BACKGROUND: Salmonid fishes exhibit high levels of phenotypic and ecological variation and are thus ideal model systems for studying evolutionary processes of adaptive divergence and speciation. Furthermore, salmonids are of major interest in fisheries, aquaculture, and conservation research. Improving understanding of the genetic mechanisms underlying traits in these species would significantly progress research in these fields. Here we generate high quality de novo transcriptomes for four salmonid species: Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Arctic charr (Salvelinus alpinus), and European whitefish (Coregonus lavaretus). All species except Atlantic salmon have no reference genome publicly available and few if any genomic studies to date. RESULTS: We used paired-end RNA-seq on Illumina to generate high coverage sequencing of multiple individuals, yielding between 180 and 210 M reads per species. After initial assembly, strict filtering was used to remove duplicated, redundant, and low confidence transcripts. The final assemblies consisted of 36,505 protein-coding transcripts for Atlantic salmon, 35,736 for brown trout, 33,126 for Arctic charr, and 33,697 for European whitefish and are made publicly available. Assembly completeness was assessed using three approaches, all of which supported high quality of the assemblies: 1) ~78% of Actinopterygian single-copy orthologs were successfully captured in our assemblies, 2) orthogroup inference identified high overlap in the protein sequences present across all four species (40% shared across all four and 84% shared by at least two), and 3) comparison with the published Atlantic salmon genome suggests that our assemblies represent well covered (~98%) protein-coding transcriptomes. Thorough comparison of the generated assemblies found that 84-90% of transcripts in each assembly were orthologous with at least one of the other three species. We also identified 34-37% of transcripts in each assembly as paralogs. We further compare completeness and annotation statistics of our new assemblies to available related species. CONCLUSION: New, high-confidence protein-coding transcriptomes were generated for four ecologically and economically important species of salmonids. This offers a high quality pipeline for such complex genomes, represents a valuable contribution to the existing genomic resources for these species and provides robust tools for future investigation of gene expression and sequence evolution in these and other salmonid species.

13.
BMC Genomics ; 19(1): 448, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890942

RESUMO

Following the publication of this article [1], the authors noticed found that they incorrectly reported the BUSCO completeness for the PhyloFish brown trout and European whitefish transcriptomes. This was due to an error in their TransDecoder pipeline and restricted to those two datasets and their interpretation. They apologise for this misreported result and thank the authors of the PhyloFish database for bringing it to their attention.

14.
Mol Ecol ; 27(22): 4572-4590, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30252984

RESUMO

Adaptive divergence with gene flow often results in complex patterns of variation within taxa exhibiting substantial ecological differences among populations. One example where this may have occurred is the parallel evolution of freshwater-resident nonparasitic lampreys from anadromous-parasitic ancestors. Previous studies have focused on transitions between these two phenotypic extremes, but here, we considered more complex evolutionary scenarios where an intermediate freshwater form that remains parasitic is found sympatrically with the other two ecotypes. Using population genomic analysis (restriction-associated DNA sequencing), we found that a freshwater-parasitic ecotype was highly distinct from an anadromous-parasitic form (Qlake-P  = 96.8%, Fst  = 0.154), but that a freshwater-nonparasitic form was almost completely admixed in Loch Lomond, Scotland. Demographic reconstructions indicated that both freshwater populations likely derived from a common freshwater ancestor. However, while the nonparasitic ecotype has experienced high levels of introgression from the anadromous-parasitic ecotype (Qanad-P  = 37.7%), there is no evidence of introgression into the freshwater-parasitic ecotype. Paradoxically, mate choice experiments predicted high potential for gene flow: Males from all ecotypes were stimulated to spawn with freshwater-parasitic females, which released gametes in response to all ecotypes. Differentially fixed single nucleotide polymorphisms identified genes associated with growth and development, which could possibly influence the timing of metamorphosis, resulting in significant ecological differences between forms. This suggests that multiple lamprey ecotypes can persist in sympatry following shifts in adaptive peaks, due to environmental change during their repeated colonization of post-glacial regions, followed by periods of extensive gene flow among such diverging populations.


Assuntos
Ecótipo , Fluxo Gênico , Genética Populacional , Lampreias/genética , Simpatria , Animais , Feminino , Lagos , Masculino , Polimorfismo de Nucleotídeo Único , Reprodução , Escócia , Análise de Sequência de DNA , Comportamento Sexual Animal
15.
J Fish Biol ; 93(1): 159-162, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931703

RESUMO

What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time.


Assuntos
Migração Animal , Salmo salar , Animais , Lagos , Rios , Escócia , Telemetria
16.
J Anim Ecol ; 86(3): 605-614, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28075009

RESUMO

Sympatric speciation is thought to be strongly linked to resource specialization with alternative resource use acting as a fundamental agent driving divergence. However, sympatric speciation through niche expansion is dependent on foraging specialization being consistent over space and time. Standard metabolic rate is the minimal maintenance metabolic rate of an ectotherm in a post-absorptive and inactive state and can constitute a significant portion of an animal's energy budget; thus, standard metabolic rate and growth rate are two measures frequently used as an indication of the physiological performance of individuals. Physiological adaptations to a specific diet may increase the efficiency with which it is utilized, but may have an increased cost associated with switching diets, which may result in a reduced standard metabolic rate and growth rate. In this study, we use the diet specialization often seen in polymorphic Arctic charr (Salvelinus alpinus) populations to study the effects of different prey on standard metabolic rate and growth rate as well as the effects that early prey specialization may have on the ability to process other prey types efficiently. We found a significant effect of prey type on standard metabolic rate and growth rate. Furthermore, we found evidence of diet specialization with all fish maintaining a standard metabolic rate and growth rate lower than expected when fed on a diet different to which they were raised, possibly due to a maladaptation in digestion of alternative prey items. Our results show that early diet specialization may be reinforced by the elevated costs of prey switching, thus promoting the process of resource specialization during the incipient stages of sympatric divergence.


Assuntos
Dieta , Comportamento Predatório , Truta/fisiologia , Adaptação Fisiológica , Animais , Especiação Genética , Simpatria , Truta/crescimento & desenvolvimento
17.
J Exp Biol ; 219(Pt 3): 374-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596536

RESUMO

In many taxa there is considerable intraspecific variation in life history strategies from within a single population, reflecting alternative routes through which organisms can achieve successful reproduction. Atlantic salmon Salmo salar (Linnaeus) show some of the greatest within-population variability in life history strategies amongst vertebrates, with multiple discrete male and female life histories co-existing and interbreeding on many spawning grounds, although the effect of the various combinations of life histories on offspring traits remains unknown. Using crosses of wild fish we show here that the life history strategy of both parents was significantly associated with a range of offspring traits. Mothers that had spent longer at sea (2 versus 1 year) produced offspring that were heavier, longer and in better condition at the time of first feeding. However, these relationships disappeared shortly after fry had begun feeding exogenously. At this stage, the juvenile rearing environment (i.e. time spent in fresh water as juveniles) of the mother was a better predictor of offspring traits, with mothers that were faster to develop in fresh water (migrating to sea after two rather than three years of age) producing offspring that had higher maximal metabolic rates, aerobic scopes, and that grew faster. Faster developing fathers (1 year old sneaker males) tended to produce offspring that had higher maximal metabolic rates, were in better body condition and grew faster. The results suggest that both genetic effects and those related to parental early and late life history contribute to offspring traits.


Assuntos
Fenótipo , Reprodução , Salmo salar/fisiologia , Animais , Feminino , Masculino , Salmo salar/genética
18.
Ecol Evol ; 14(2): e10932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343565

RESUMO

Phenotypic plasticity has been presented as a potential rapid-response mechanism with which organisms may confront swift environmental change and increasing instability. Among the many difficulties potentially facing freshwater fishes in recently glaciated ecosystems is that of invertebrate prey communities becoming significantly altered in species composition and relative abundance. To test how the rapidity of diet resource change may affect phenotypic responses during development, we subjected juvenile brown trout to pelagic-type or littoral-type diets that alternated either daily, sub-seasonally, or not at all over a single growth season. The proportional intake of each diet was traced with stable isotopes of carbon and nitrogen and modelled with morphometric data on head and jaw shape. While those trout exposed to a single diet type developed predictable morphologies associated with pelagic or littoral foragers, those raised on alternating diets expressed more unpredictable morphologies. With extreme (daily) or even sub-seasonal (monthly) resource instability, the association of diet type with the phenotype was overwhelmed, calling into question the efficacy of plasticity as a means of adaptation to environments with rapidly fluctuating prey resources.

19.
PeerJ ; 11: e15545, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605749

RESUMO

Geometric morphometrics is widely used to quantify morphological variation between biological specimens, but the fundamental influence of operator bias on data reproducibility is rarely considered, particularly in studies using photographs of live animals taken under field conditions. We examined this using four independent operators that applied an identical landmarking scheme to replicate photographs of 291 live Atlantic salmon (Salmo salar L.) from two rivers. Using repeated measures tests, we found significant inter-operator differences in mean body shape, suggesting that the operators introduced a systematic error despite following the same landmarking scheme. No significant differences were detected when the landmarking process was repeated by the same operator on a random subset of photographs. Importantly, in spite of significant operator bias, small but statistically significant morphological differences between fish from the two rivers were found consistently by all operators. Pairwise tests of angles of vectors of shape change showed that these between-river differences in body shape were analogous across operator datasets, suggesting a general reproducibility of findings obtained by geometric morphometric studies. In contrast, merging landmark data when fish from each river are digitised by different operators had a significant impact on downstream analyses, highlighting an intrinsic risk of bias. Overall, we show that, even when significant inter-operator error is introduced during digitisation, following an identical landmarking scheme can identify morphological differences between populations. This study indicates that operators digitising at least a sub-set of all data groups of interest may be an effective way of mitigating inter-operator error and potentially enabling data sharing.


Assuntos
Disseminação de Informação , Salmo salar , Animais , Reprodutibilidade dos Testes , Projetos de Pesquisa , Rios
20.
Ecol Evol ; 12(3): e8684, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35309753

RESUMO

It has been suggested that a trade-off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, Salmo trutta, from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes. We found that brain size, and the size of optic tectum and telencephalon differed across the three habitats, both being largest in lake fish with a tendency to be smaller in the stream compared to hatchery fish. Therefore, our findings do not support the hypothesis that in brown trout the volume of brain and its regions important for navigation and decision-making increases in physically complex habitats. We suggest that the observed differences in brain size might be associated with diet quality and habitat-specific behavioral adaptations rather than physical habitat complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA