Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(1 Suppl 1): e20220190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144919

RESUMO

NAC transcription factors are plant-specific proteins involved in many processes during the plant life cycle and responses to biotic and abiotic stresses. Previous studies have shown that stress-induced OsNAC5 from rice (Oryza sativa L.) is up-regulated by senescence and might be involved in control of iron (Fe) and zinc (Zn) concentrations in rice seeds. Aiming a better understanding of the role of OsNAC5 in rice plants, we investigated a mutant line carrying a T-DNA insertion in the promoter of OsNAC5, which resulted in enhanced expression of the transcription factor. Plants with OsNAC5 enhanced expression were shorter at the seedling stage and had reduced yield at maturity. In addition, we evaluated the expression level of OsNAC6, which is co-expressed with OsNAC5, and found that enhanced expression of OsNAC5 leads to increased expression of OsNAC6, suggesting that OsNAC5 might regulate OsNAC6 expression. Ionomic analysis of leaves and seeds from the OsNAC5 enhanced expression line revealed lower Fe and Zn concentrations in leaves and higher Fe concentrations in seeds than in WT plants, further suggesting that OsNAC5 may be involved in regulating the ionome in rice plants. Our work shows that fine-tuning of transcription factors is key when aiming at crop improvement.

2.
Physiol Mol Biol Plants ; 26(5): 955-964, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32377045

RESUMO

Incidence of cold during early stages is an obstacle for the growing progress of rice plants. Cold stress has strong negative effects on photosynthetic activity. Previously, our group evaluated plant survival of 90 indica rice genotypes after cold treatment. Two sister lines were characterized as cold-tolerant and cold-sensitive. Transcriptomic analyses of the same genotypes had indicated differential expression of genes related to photosynthesis. Previous work with japonica rice had suggested that cold sensitivity was more related to photosystem II (PSII) than to photosystem I (PSI). Using our previously identified contrasting genotypes, we investigated the role of specific steps of the photosynthetic process in cold tolerance/sensitivity of indica rice plants during and after (recovery period) cold exposure. During both cold treatment and recovery period, the photochemical activity (including PSII and PSI) presented higher levels in the low temperature-tolerant genotype, when compared with the sensitive one. The higher photochemical efficiency during the cold treatment appears to be related to a lower fraction of reduced QA - in PSII. We also observed lower transpiration rates and higher water use efficiency in the cold-tolerant genotype, due to stomatal closure. After the recovery period, the higher efficiency in the cold-tolerant genotype seems to be related to a lower fraction of reduced QA - and a larger pool of final electron acceptors at the PSI. This work uncovered changes in photosynthetic performance including both photosystems and improved water use efficiency which may be important components of cold tolerance mechanisms in indica rice.

3.
Plant Cell Rep ; 37(2): 347-375, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29151156

RESUMO

KEY MESSAGE: Cold-tolerance in rice may be related to increased cellulose deposition in the cell wall, membrane fatty acids unsaturation and differential expression of several newly identified genes. Low temperature exposure during early vegetative stages limits rice plant's growth and development. Most genes previously related to cold tolerance in rice are from the japonica subspecies. To help clarify the mechanisms that regulate cold tolerance in young indica rice plants, comparative transcriptome analysis of 6 h cold-treated (10 °C) leaves from two genotypes, cold-tolerant (CT) and cold-sensitive (CS), was performed. Differentially expressed genes were identified: 831 and 357 sequences more expressed in the tolerant and in the sensitive genotype, respectively. The genes with higher expression in the CT genotype were used in systems biology analyses to identify protein-protein interaction (PPI) networks and nodes (proteins) that are hubs and bottlenecks in the PPI. From the genes more expressed in the tolerant plants, 60% were reported as affected by cold in previous transcriptome experiments and 27% are located within QTLs related to cold tolerance during the vegetative stage. Novel cold-responsive genes were identified. Quantitative RT-PCR confirmed the high-quality of RNAseq libraries. Several genes related to cell wall assembly or reinforcement are cold-induced or constitutively highly expressed in the tolerant genotype. Cold-tolerant plants have increased cellulose deposition under cold. Genes related to lipid metabolism are more expressed in the tolerant genotype, which has higher membrane fatty acids unsaturation, with increasing levels of linoleic acid under cold. The CT genotype seems to have higher photosynthetic efficiency and antioxidant capacity, as well as more effective ethylene, Ca2+ and hormone signaling than the CS. These genes could be useful in future biotechnological approaches aiming to increase cold tolerance in rice.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genótipo , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento
4.
Front Plant Sci ; 12: 613568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643348

RESUMO

Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to analyze the response of two African rice species (Oryza barthii and Oryza glaberrima), weedy rice (O. sativa f. spontanea), and O. sativa cv. Nipponbare to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, and chlorophyll concentration/fluorescence indicated that the African species present a higher level of leaf damage, increased accumulation of H2O2, and lower photosynthetic capacity when compared to O. sativa plants under infested conditions. Infestation decreased tiller number, except in Nipponbare, and caused the death of O. barthii and O. glaberrima plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa, the number of panicles per plant was affected only in O. sativa f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) plants under control and infested conditions. O. barthii presents a less abundant antioxidant arsenal and is unable to modulate proteins involved in general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes, and energy production, suggesting that the primary metabolism is maintained more active compared to O. barthii under infested condition. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors (PIs). These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming at increased tolerance to mite infestation.

5.
J Plant Physiol ; 255: 153307, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33142180

RESUMO

Rice (Oryza sativa L.) ssp. indica is the most cultivated species in the South of Brazil. However, these plants face low temperature stress from September to November, which is the period of early sowing, affecting plant development during the initial stages of growth, and reducing rice productivity. This study aimed to characterize the root response to low temperature stress during the early vegetative stage of two rice genotypes contrasting in their cold tolerance (CT, cold-tolerant; and CS, cold-sensitive). Root dry weight and length, as well as the number of root hairs, were higher in CT than CS when exposed to cold treatment. Histochemical analyses indicated that roots of CS genotype present higher levels of lipid peroxidation and H2O2 accumulation, along with lower levels of plasma membrane integrity than CT under low temperature stress. RNAseq analyses revealed that the contrasting genotypes present completely different molecular responses to cold stress. The number of over-represented functional categories was lower in CT than CS under cold condition, suggesting that CS genotype is more impacted by low temperature stress than CT. Several genes might contribute to rice cold tolerance, including the ones related with cell wall remodeling, cytoskeleton and growth, signaling, antioxidant system, lipid metabolism, and stress response. On the other hand, high expression of the genes SRC2 (defense), root architecture associated 1 (growth), ACC oxidase, ethylene-responsive transcription factor, and cytokinin-O-glucosyltransferase 2 (hormone-related) seems to be related with cold sensibility. Since these two genotypes have a similar genetic background (sister lines), the differentially expressed genes found here can be considered candidate genes for cold tolerance and could be used in future biotechnological approaches aiming to increase rice tolerance to low temperature.


Assuntos
Aclimatação/genética , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Oryza/genética , Oryza/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Aclimatação/fisiologia , Brasil , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo
6.
Front Plant Sci ; 9: 1341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279693

RESUMO

Rice is the staple food for over half of the world's population. Infestation of Schizotetranychus oryzae (Acari: Tetranychidae) causes great losses in rice productivity. To search for rice genotypes that could better tolerate S. oryzae infestation, we evaluated morphological and production parameters in Brazilian cultivars, and identified two cultivars with contrasting responses. Leaf damage during infestation was similar for all cultivars. However, infestation in Puitá INTA-CL resulted in reduction in the number of seeds per plant, percentage of full seeds, weight of 1,000 seeds, and seed length, whereas infestation in IRGA 423 increased weight of 1,000 seeds and seed length. Reduction in seed weight per plant caused by infestation was clearly higher in Puitá INTA-CL (62%) compared to IRGA 423 (no reduction detected), thus Puitá INTA-CL was established as susceptible, and IRGA 423 as tolerant to S. oryzae infestation. Photosynthetic parameters were less affected by infestation in IRGA 423 than in Puitá INTA-CL, evidencing higher efficiency of energy absorption and use. S. oryzae infestation also caused accumulation of H2O2, decreased cell membrane integrity (indicative of cell death), and accelerated senescence in leaves of Puitá INTA-CL, while leaves of IRGA 423 presented higher levels of total phenolics compounds. We performed proteomics analysis of Puitá INTA-CL and IRGA 423 leaves after 7 days of infestation, and identified 60 differentially abundant proteins (28 more abundant in leaves of Puitá INTA-CL and 32 in IRGA 423). Proteins related to plant defense, such as jasmonate synthesis, and related to other mechanisms of tolerance such as oxidative stress, photosynthesis, and DNA structure maintenance, together with energy production and general metabolic processes, were more abundant in IRGA 423. We also detected higher levels of silicon (as amorphous silica cells) in leaves of infested IRGA 423 plants compared to Puitá INTA-CL, an element previously linked to plant defense, indicating that it could be involved in tolerance mechanisms. Taken together, our data show that IRGA 423 presents tolerance to S. oryzae infestation, and that multiple mechanisms might be employed by this cultivar. These findings could be used in biotechnological approaches aiming to increase rice tolerance to mite infestation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA