Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Talanta ; 270: 125562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159354

RESUMO

Vapor detection is a noncontact sampling method, which is a less invasive means of explosives screening than physical swiping. Explosive vapor detection is a challenge due to the low levels of vapors available for detection. This study demonstrates that the parts-per-quadrillion sensitivity of atmospheric flow tube-mass spectrometry (AFT-MS) combined with a high-volume air sampler enables standoff detection of trace explosives vapor at distances of centimeters to meters. Standoff detection of explosives vapor was possible both upstream and downstream of the vapor source relative to room air currents. RDX vapor from a saturated source was detected at up to 2.5 m. Vapors from RDX residue and nitroglycerin residue were detected at distances up to 0.5 m. The sampling can be optimized by accounting for air movement in the room or environment, which could further extend standoff detection distances. Using AFT-MS with a high-volume sampler could also be effective for standoff vapor detection of drugs and additional chemical threats and could be useful for security screening applications such as at mail facilities, border crossings, and security checkpoints.

2.
Langmuir ; 28(8): 3931-7, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22329500

RESUMO

A method for tuning the analyte affinity of magnetic, inorganic nanostructured sorbents for heavy metal contaminants is described. The manganese-doped iron oxide nanoparticle sorbents have a remarkably high affinity compared to the precursor material. Sorbent affinity can be tuned toward an analyte of interest simply by adjustment of the dopant quantity. The results show that following the Mn doping process there is a large increase in affinity and capacity for heavy metals (i.e., Co, Ni, Zn, As, Ag, Cd, Hg, and Tl). Capacity measurements were carried out for the removal of cadmium from river water and showed significantly higher loading than the relevant commercial sorbents tested for comparison. The reduction in Cd concentration from 100 ppb spiked river water to 1 ppb (less than the EPA drinking water limit of 5 ppb for Cd) was achieved following treatment with the Mn-doped iron oxide nanoparticles. The Mn-doped iron oxide nanoparticles were able to load ~1 ppm of Cd followed by complete stripping and recovery of the Cd with a mild acid wash. The Cd loading and stripping is shown to be consistent through multiple cycles with no loss of sorbent performance.


Assuntos
Compostos Férricos/química , Manganês/química , Nanopartículas Metálicas/química , Metais Pesados/química , Adsorção , Cádmio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
3.
Inorg Chem Commun ; 18: 92-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22942668

RESUMO

An improved synthesis of a 3,4 hydroxypyridinone (HOPO) functionalized mesoporous silica is described. Higher 3,4-HOPO monolayer ligand loadings have been achieved, resulting in better performance. Performance improvements were demonstrated with the capture of U(VI) from human blood, plasma and filtered river water.

4.
Langmuir ; 26(14): 12285-92, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20550201

RESUMO

Multifunctional organic molecules represent an interesting challenge for nanoparticle functionalization due to the potential for undesirable interactions between the substrate material and the variable functionalities, making it difficult to control the final orientation of the ligand. In the present study, UV-induced thiol-ene click chemistry has been utilized as a means of directed functionalization of bifunctional ligands on an iron oxide nanoparticle surface. Allyl diphosphonic acid ligand was covalently deposited on the surface of thiol-presenting iron oxide nanoparticles via the formation of a UV-induced thioether. This method of thiol-ene click chemistry offers a set of reaction conditions capable of controlling the ligand deposition and circumventing the natural affinity exhibited by the phosphonic acid moiety for the iron oxide surface. These claims are supported via a multimodal characterization platform which includes thermogravimetric analysis, X-ray photoelectron spectroscopy, and metal contact analysis and are consistent with a properly oriented, highly active ligand on the nanoparticle surface. These experiments suggest thiol-ene click chemistry as both a practical and generally applicable strategy for the directed deposition of multifunctional ligands on metal oxide nanoparticle surfaces.


Assuntos
Difosfonatos/química , Compostos Férricos/química , Magnetismo , Nanopartículas/química , Compostos de Sulfidrila/química , Ligantes , Modelos Moleculares , Conformação Molecular
5.
Small ; 5(8): 961-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19242951

RESUMO

The ability to process and purify engineered nanomaterials using near critical or supercritical fluids (NcFs or ScFs) has enormous potential for the application at various stages of the development of green nanomaterials. The dispersibility of octanethiol-stabilized gold nanocrystals of different core sizes is explored, which were chosen to serve as model nanomaterials of general interest in compressed ethane and propane over a wide range of fluid conditions. Both solvents have enormous potential for the environmentally benign processing and transport of engineered nanomaterials due to their nominal toxicity and high degree of tunability and processability that can essentially eliminate solvent waste. The dispersibility is determined by measuring the absorption spectra of dispersions of various sizes of nanocrystals in NcFs. To better understand the obtained results three models, the total interaction theory, the sedimentation coefficient equation, and the Chrastil method, are discussed. Nanoparticle dispersibility versus density plots are strongly dependent on nanoparticle size and solvent conditions, with the dispersion of larger nanocrystals more dependent on changes of pressure or density at a given temperature. For the range of nanoparticle sizes studied, compressed ethane at 25 degrees C leads to a greater tunability of nanoparticle dispersion when compared with compressed propane at 65 degrees C. For equivalent pressures, compressed propane is found to provide better solubility than ethane due to its higher density. The results quantitatively demonstrate that NcFs can offer pressure-tunable, size-selective control of nanoparticle solvation and transport at easily obtainable temperature and pressure conditions. These capabilities provide clear advantages over conventional solvents and direct application to various nanomaterials processes, such as synthesis, separation, transport, and purification of nanocrystals.


Assuntos
Ouro/química , Nanopartículas/química , Nanoestruturas/química , Solventes/química , Cristalização , Etano/química , Propano/química , Temperatura
6.
Chemistry ; 15(17): 4458-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19283821

RESUMO

Uranyl ions [UO(2)](2+) in aqueous nitric acid can be extracted into supercritical CO(2) (sc-CO(2)) by using an imidazolium-based ionic liquid with tri-n-butyl phosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiber-optic cell. The form of the uranyl complex extracted into the sc-CO(2) phase was identified to be [UO(2)(NO(3))(2)(TBP)(2)]. The extraction results were confirmed by fluorescence spectroscopy and by neutron activation analysis. This technique has potential applications in the field of nuclear waste management for extracting other actinides.

7.
Inorg Chem Commun ; 12(4): 312-315, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22068901

RESUMO

Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl(4) (-2).

8.
Sci Rep ; 9(1): 8055, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147559

RESUMO

The agar culture plate has played a crucial role in bacteriology since the origins of the discipline and is a staple bioanalytical method for efforts ranging from research to standard clinical diagnostic tests. However, plating, inoculating, and waiting for microbes to develop colonies that are visible is time-consuming. In this work, we demonstrate white-light interferometry (WLI) as a practical tool for accelerated and improved measurement of bacterial cultures. High resolution WLI surface profile imaging was used for nondestructive characterization and counting of bacterial colonies on agar before they became visible to the naked eye. The three-dimensional (3D) morphology of Gram-negative (Pseudomonas fluorescens) and Gram-positive (Bacillus thuringiensis) bacterial species were monitored with WLI over time by collecting surface profiles of colonies on agar plates with high vertical resolution (3-5 nanometers) and large field of view (3-5 mm). This unique combination of sensitive vertical resolution and large field of view uniquely provided by WLI enables measurement of colony morphologies and nondestructive monitoring of hundreds of microcolonies. Individual bacteria were imaged within the first few hours after plating and colonies were accurately counted with results comparing favorably to counts made by traditional methods that require much longer wait times. Nondestructive imaging was used to track single cells multiplying into small colonies and the volume changes over time in these colonies were used to measure their growth rates. Based on the results herein, bioimaging with WLI was demonstrated as a novel rapid bacterial culture assay with several advantageous capabilities. Fast nondestructive counting of colony-forming units in a culture and simultaneous measurement of bacterial growth rates and colony morphology with this method may be beneficial in research and clinical applications where current methods are either too slow or are destructive.


Assuntos
Bacillus thuringiensis/crescimento & desenvolvimento , Imageamento Tridimensional/métodos , Imagem Óptica/métodos , Pseudomonas fluorescens/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Estudos de Viabilidade , Interferometria/métodos , Luz
9.
Chem Commun (Camb) ; (43): 5583-5, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18997959

RESUMO

A new class of sorbent material, which exhibits exceptional metal capture from contaminated natural water, features aromatic thiol ligands reversibly bound to functionalized mesoporous silica through non-covalent interactions and have the potential of being regenerable.


Assuntos
Metais Pesados/química , Dióxido de Silício/química , Compostos de Sulfidrila/química , Adsorção , Compostos de Benzil/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Substâncias Macromoleculares/química , Teste de Materiais , Estrutura Molecular , Porosidade , Propriedades de Superfície , Temperatura
10.
Appl Spectrosc ; 62(7): 739-46, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18935822

RESUMO

The detection and identification of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) vapors have proven to be difficult and challenging due to the low vapor pressures of these high explosives. Detecting higher vapor pressure impurity compounds found in TNT and possible tagging agents mandated to be added to plastic explosives (RDX and PETN) would allow for easier vapor detection. The higher vapor pressure nitro compounds of interest are considered to be non-fluorescent; however, once reduced to their amino analogs, they have relatively high quantum yields. The standard reduction products, the reduction products obtained in solution, and the reduction products obtained in vapor phase were analyzed by conventional fluorescence, synchronous luminescence, and derivative spectroscopy. The nitro analogs of the isomers 1,3-diaminobenzene, 1,2-diaminobenzene, and 1,4-diaminobenzene are found as impurities in TNT. We provide for the first time the synchronous luminescence derivative spectra of these isomers; including their individual spectra and a spectrum of an isomeric mixture of the three. Using the standard reduction products associated with these isomers and other aromatic amines, our data suggest that the vapors of two signature impurities, 1,3-dinitrobenzene and 2,4-dinitrotoluene (2,4-DNT), minor impurity compounds, and two possible tagging agents, 2-nitrotoluene (2-NT) and 4-nitrotoluene (4-NT), can be detected and selectively identified using our fluorescence approach. To prove our methodology, we show that we were able to generate, collect, and reduce 2-NT, 4-NT, and 2,4-DNT vapors to their amino analogs. Using our fluorescence approach, these vapors could be detected and selectively identified both individually and in a mixture. Collectively, our data indicate that our method of detecting and identifying higher vapor pressure explosive-like compounds could potentially be used to detect and identify low vapor pressure explosives such as TNT, RDX, and PETN.

11.
J Nanosci Nanotechnol ; 8(11): 5781-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198305

RESUMO

In this work we introduce an efficient method for averting non-specific adsorption of various nanoparticles to typical oxide surfaces, such as glass, quartz, and sapphire, through the attachment of a fluorinated self-assembled monolayer (SAM) that minimizes the interactions between stabilized nanoparticles and these surfaces. This surface treatment is shown to be effective for a variety of nanoparticles in a range of solvent systems. As a result, monitoring and characterization of nanoparticles and their surface chemistry is allowed, while simultaneously preventing loss of expensive nanomaterials to the various surfaces inherent in laboratory apparatus.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Óxidos/química , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Anal Methods ; 9(19): 2791-2804, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31156721

RESUMO

Radioactive contamination, be it from accidental or intentional release, can create an urgent need to assess water and food supplies and the environment, and monitor human health. In the event of such an emergency, rapid and efficient methods may be needed to assess contamination levels in scores of samples within a short time frame. Internalized exposure to radionuclides that decay by alpha (α) emission can be especially hazardous, given the strongly ionizing nature of the α particle. Unfortunately, the determination of α-emitting radionuclides using traditional radioanalytical methods is typically labor and resource intensive and time consuming. In an effort to devise methods that are fast, require little labor and laboratory expendables, and minimize the use of toxic or corrosive reagents, researchers at PNNL have evaluated superparamagnetic nanoparticles as extracting agents for α-emitting radionuclides from chemically unmodified and acidified (pH 2) aqueous systems. It is demonstrated that bare magnetite nanoparticles exhibit strong affinity for two representative α-emitting radionuclides (241Am and 210Po) from two representative aqueous matrices (river and ground water). Furthermore, use of the superparamagnetic properties of these nanomaterials to concentrate the analyte-bearing solids from the bulk aqueous solution has been demonstrated. The nanoparticle concentrate can be either directly dispensed into a scintillation cocktail, or first dissolved and then added to a scintillation cocktail as a solution for an α-emission assay by liquid scintillation analysis. Despite the severe quenching caused by the metal oxide suspensions in the cocktail, the authors have demonstrated that modern liquid scintillation analyzers can report accurate α activity count rates; the upper limits of nanoparticle suspension concentrations in a cocktail are reported for cases wherein normal instrument count mode and a quench correction protocol are used. Discussions are provided on the presented sample processing and analysis method, the improvement (lowering) of minimum detectable activity concentrations using the nanoparticle-based assay method, and the quenching effects of nanoparticle suspensions in a scintillation cocktail.

13.
Biomicrofluidics ; 11(4): 044113, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28868106

RESUMO

There is a need for imaging and sensing instrumentation that can monitor transitions in a biofilm structure in order to better understand biofilm development and emergent properties such as anti-microbial resistance. Herein, we describe the design, manufacture, and use of a microfluidic flow cell to visualize the surface structure of bacterial biofilms with white-light interferometry (WLI). The novel imaging chip enabled the use of this non-disruptive imaging method for the capture of high resolution three-dimensional profile images of biofilm growth over time. The fine axial resolution (3 nm) and the wide field of view (>1 mm by 1 mm) enabled the detection of biofilm formation as early as 3 h after inoculation of the flow cell with a live bacterial culture (Pseudomonas fluorescens). WLI imaging facilitated the monitoring of the early stages of biofilm development and subtle variations in the structure of mature biofilms. Minimally-invasive imaging enabled the monitoring of biofilm structure with surface metrology metrics (e.g., surface roughness). The system was used to observe a transition in the biofilm structure that occurred in response to exposure to a common antiseptic. In the future, WLI and the biofilm imaging cell described herein may be used to test the effectiveness of biofilm-specific therapies to combat common diseases associated with biofilm formation such as cystic fibrosis and periodontitis.

14.
RSC Adv ; 6(107): 105239-105251, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31354950

RESUMO

Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. Additionally, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. Herein, two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes, were evaluated for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commercially available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is obtained within a few minutes, which is attributed to the high surface areas of the nanomaterials and the high level of dispersion in the liquids. Overall, the results indicate that these nanomaterials may have the potential to be employed for a range of applications to extract radionuclides from aqueous solutions.

15.
Talanta ; 154: 219-27, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154668

RESUMO

We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces.

16.
Dalton Trans ; 45(28): 11312-25, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27184739

RESUMO

The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.

17.
Angew Chem Int Ed Engl ; 40(14): 2692-2694, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29712302

RESUMO

Feasible photocatalysis: The rhodium catalyst [Rh(CO)(PMe3 )2 Cl] photochemically transforms ethane to propionaldehyde in single-phase mixtures of ethane and in carbon dioxide/ethane single phases [Eq. (1)]. A side reaction of carbon dioxide with the catalyst to give OPMe3 and [Rh(CO)2 (PMe3 )Cl] or [Rh2 (CO)2 (PMe3 )2 (µ-Cl)2 ] has also been observed.

18.
Nanomedicine (Lond) ; 8(1): 145-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23256497

RESUMO

A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.


Assuntos
Nanopartículas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tamanho da Partícula
19.
Health Phys ; 101(2): 196-208, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21709509

RESUMO

In the event of an accidental or intentional release of radionuclides into a populated area, massive numbers of people may require radiobioassay screening as triage for dose-reduction therapy or identification for longer-term follow-up. If the event released significant levels of beta- or alpha-emitting radionuclides, in vivo assays would be ineffective. Therefore, highly efficient and rapid analytical methods for radionuclide detection from submitted spot urine samples (≤50 mL) would be required. At present, the quantitative determination of alpha-emitting radionuclides from urine samples is highly labor intensive and requires significant time to prepare and analyze samples. Sorbent materials that provide effective collection and enable rapid assay could significantly streamline the radioanalytical process. The authors have demonstrated the use of magnetic nanoparticles as a novel method of extracting media for four alpha-emitting radionuclides of concern (polonium, radium, uranium and americium) from chemically-unmodified and pH-2 human urine. Herein, the initial experimental sorption results are presented along with a novel method that uses magnetic nanoparticles to extract radionuclides from unmodified human urine and then collect the magnetic field-induced particles for subsequent alpha-counting-source preparation. Additionally, a versatile human dose model is constructed that determines the detector count times required to estimate dose at specific protective-action thresholds. The model provides a means to assess a method's detection capabilities and uses fundamental health physics parameters and actual experimental data as core variables. The modeling shows that, with effective sorbent materials, rapid screening for alpha-emitters is possible with a 50-mL urine sample collected within 1 wk of exposure/intake.


Assuntos
Magnetismo , Nanopartículas Metálicas/química , Monitoramento de Radiação/métodos , Radioisótopos/urina , Urinálise/métodos , Partículas alfa , Humanos , Concentração de Íons de Hidrogênio , Monitoramento de Radiação/instrumentação , Sensibilidade e Especificidade , Fatores de Tempo , Urinálise/instrumentação
20.
J Hazard Mater ; 192(3): 1140-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21752538

RESUMO

We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7h. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Crosslinked tyrosinase in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, was stable enough for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic and organic contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.


Assuntos
Dióxido de Silício/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Biodegradação Ambiental , Carbono/análise , Carbono/química , Catecóis/química , Reagentes de Ligações Cruzadas/química , Recuperação e Remediação Ambiental , Compostos Férricos/química , Corantes Fluorescentes/análise , Substâncias Perigosas , Magnetismo , Monofenol Mono-Oxigenase/química , Porosidade , Propriedades de Superfície , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA