Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Semin Cancer Biol ; 94: 50-61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301450

RESUMO

Obesity results from a chronic excessive accumulation of adipose tissue due to a long-term imbalance between energy intake and expenditure. Available epidemiological and clinical data strongly support the links between obesity and certain cancers. Emerging clinical and experimental findings have improved our understanding of the roles of key players in obesity-associated carcinogenesis such as age, sex (menopause), genetic and epigenetic factors, gut microbiota and metabolic factors, body shape trajectory over life, dietary habits, and general lifestyle. It is now widely accepted that the cancer-obesity relationship depends on the site of cancer, the systemic inflammatory status, and micro environmental parameters such as levels of inflammation and oxidative stress in transforming tissues. We hereby review recent advances in our understanding of cancer risk and prognosis in obesity with respect to these players. We highlight how the lack of their consideration contributed to the controversy over the link between obesity and cancer in early epidemiological studies. Finally, the lessons and challenges of interventions for weight loss and better cancer prognosis, and the mechanisms of weight gain in survivors are also discussed.


Assuntos
Neoplasias , Obesidade , Feminino , Humanos , Obesidade/complicações , Obesidade/metabolismo , Prognóstico , Neoplasias/epidemiologia , Neoplasias/etiologia , Carcinogênese , Fatores de Risco
2.
Molecules ; 28(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677744

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, resulting in motor deficits. The exact etiology of PD is currently unknown; however, the pathological hallmarks of PD include excessive production of reactive oxygen species, enhanced neuroinflammation, and overproduction of α-synuclein. Under normal physiological conditions, aggregated α-synuclein is degraded via the autophagy lysosomal pathway. However, impairment of the autophagy lysosomal pathway results in α-synuclein accumulation, thereby facilitating the pathogenesis of PD. Current medications only manage the symptoms, but are unable to delay, prevent, or cure the disease. Collectively, oxidative stress, inflammation, apoptosis, and autophagy play crucial roles in PD; therefore, there is an enormous interest in exploring novel bioactive agents of natural origin for their protective roles in PD. The present study evaluated the role of myrcene, a monoterpene, in preventing the loss of dopaminergic neurons in a rotenone (ROT)-induced rodent model of PD, and elucidated the underlying mechanisms. Myrcene was administered at a dose of 50 mg/kg, 30 min prior to the intraperitoneal injections of ROT (2.5 mg/kg). Administration of ROT caused a considerable loss of dopaminergic neurons, subsequent to a significant reduction in the antioxidant defense systems, increased lipid peroxidation, and activation of microglia and astrocytes, along with the production of pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß) and matrix metalloproteinase-9. Rotenone also resulted in impairment of the autophagy lysosomal pathway, as evidenced by increased expression of LC3, p62, and beclin-1 with decreased expression in the phosphorylation of mTOR protein. Collectively, these factors result in the loss of dopaminergic neurons. However, myrcene treatment has been observed to restore antioxidant defenses and attenuate the increase in concentrations of lipid peroxidation products, pro-inflammatory cytokines, diminished microglia, and astrocyte activation. Myrcene treatment also enhanced the phosphorylation of mTOR, reinstated neuronal homeostasis, restored autophagy-lysosomal degradation, and prevented the increased expression of α-synuclein following the rescue of dopaminergic neurons. Taken together, our study clearly revealed the mitigating effect of myrcene on dopaminergic neuronal loss, attributed to its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, and favorable modulation of autophagic flux. This study suggests that myrcene may be a potential candidate for therapeutic benefits in PD.


Assuntos
Antioxidantes , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Apoptose , Autofagia , Citocinas/metabolismo , Neurônios Dopaminérgicos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Rotenona/toxicidade
3.
Xenobiotica ; 51(12): 1427-1435, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34931580

RESUMO

Exposure to or ingestion of turpentine can alter the scent of urine, conferring it a flowery, violet-like scent. Turpentine's effect on urine was initially noticed after its use either as medicine or as a preservative in winemaking. Regardless of the source of exposure, the phenomenon requires metabolic conversion of turpentine component(s) to ionone, the molecule mainly responsible for the scent of violets.The purpose of this study was to identify the presence of ionone in the urine of rats that received ß-pinene, and thus to demonstrate that the postulated conversion occurs.We treated rats intraperitoneally with normal saline (negative control), ß-ionone (positive control), low-dose ß-pinene (1/3 of LD50), and high-dose ß-pinene (1/2 of LD50). Urine samples were collected up to 72 h after administration of the compounds, followed by gas chromatography/mass spectrometry identification of the presence of ionone.ß-Ionone was found in the urine of rats exposed to both low and high doses of ß-pinene. In contrast, α-ionone appears unlikely to have been formed in rats exposed to either low or high doses of ß-pinene. ß-pinene was converted to ß-ionone, followed by partial excretion in the urine of rats. ß-Ionone is a minor metabolite of ß-pinene.


Assuntos
Norisoprenoides , Terebintina , Animais , Monoterpenos Bicíclicos , Ratos
4.
J Ment Health Policy Econ ; 24(3): 89-95, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554106

RESUMO

BACKGROUND: Burden of opioid use disorder (OUD) is expressed in economic values or health metrics like Disability Adjusted Life Years (DALYs). Disability Weight (DW), a component of DALYs is estimated using economic methods or psychometric tools. Estimating DW at patient level using psychometric tools is an alternative to non-population specific DW overestimated by economic methods. Providing Medication Assisted Treatment (MAT) using buprenorphine/naloxone film (BUP/NX-F) for OUD is limited by financial constraints. AIM: To estimate the burden of OUD at patient level and explore the cost-benefit of two buprenorphine treatment interventions. METHODS: The present study was conducted alongside a randomized controlled trial of 141 adults with OUD stabilized on BUP/NX-F and randomized to BUP/NX-F with Incentivized Abstinence and Adherence Monitoring (experimental, n=70) and BUP/NX-F in usual care (control, n=71). The cost of illness was estimated applying a societal perspective. The Impairment Weight (IW) was estimated over a '0' to '1' scale, where '0' represents no impairment and '1' full impairment using the Work and Social Adjustment Scale (WSAS). RESULTS: Median (interquartile range) annual cost of OUD per participant was AED 498,171.1 (413,499.0 -635,725.3) and AED 538,694.4 (4,211,398.0 - 659,949.0) in the experimental and control groups, respectively (p=0.33). Illicit drug purchase represented 60 % of the annual cost of illness. At baseline, the mean Impairment Weight (IW) was 0.55 (SD 0.26) and 0.62 (SD 0.24) in the experimental and control groups, respectively. At end of the study, the IW was 0.26 (SD 0.28) representing 51% reduction in the experimental group compared to 0.42 (SD 0.33) in the control group representing a 27% reduction. Excluding imprisonment, the cost-benefit of treatment was not realized. In contrast, accounting for imprisonment, cost benefit expressed as a return-on-investment was established at 1.55 and 1.29 in the experimental and control groups, respectively. IMPLICATIONS FOR MENTAL HEALTH POLICY: Cost benefit analysis can serve as a simple and practical tool to evaluate the cost benefit of treatment interventions. Demonstrating the cost benefit of buprenorphine treatment has the potential to facilitate public funding and accessibility to opioid assisted treatment.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Adulto , Buprenorfina/uso terapêutico , Combinação Buprenorfina e Naloxona/uso terapêutico , Análise Custo-Benefício , Humanos , Antagonistas de Entorpecentes/uso terapêutico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
5.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445300

RESUMO

Type 2 diabetes mellitus is a widespread medical condition, characterized by high blood glucose and inadequate insulin action, which leads to insulin resistance. Insulin resistance in insulin-responsive tissues precedes the onset of pancreatic ß-cell dysfunction. Multiple molecular and pathophysiological mechanisms are involved in insulin resistance. Insulin resistance is a consequence of a complex combination of metabolic disorders, lipotoxicity, glucotoxicity, and inflammation. There is ample evidence linking different mechanistic approaches as the cause of insulin resistance, but no central mechanism is yet described as an underlying reason behind this condition. This review combines and interlinks the defects in the insulin signal transduction pathway of the insulin resistance state with special emphasis on the AGE-RAGE-NF-κB axis. Here, we describe important factors that play a crucial role in the pathogenesis of insulin resistance to provide directionality for the events. The interplay of inflammation and oxidative stress that leads to ß-cell decline through the IAPP-RAGE induced ß-cell toxicity is also addressed. Overall, by generating a comprehensive overview of the plethora of mechanisms involved in insulin resistance, we focus on the establishment of unifying mechanisms to provide new insights for the future interventions of type 2 diabetes mellitus.


Assuntos
Resistência à Insulina/fisiologia , Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
6.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361780

RESUMO

Parkinson's disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.


Assuntos
Autofagia/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Noscapina/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Catalase/genética , Catalase/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Mol Cell Biochem ; 471(1-2): 1-13, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32533464

RESUMO

Rilpivirine, a recently developed drug of choice for initial treatment of HIV-1 infection, can greatly reduce HIV-related inflammation, but in turn, may be associated with adverse secondary effects, including disturbances in lipid metabolism and ultimately in adipose tissue distribution and function. In recent years, research findings on the benefits of anti-oxidant foods and supplements have been employed in counter-acting both oxidative stress as well as inflammation in order to reduce the adverse side effects of anti-retroviral therapy. One such natural flavonoid which possesses anti-inflammatory and anti-oxidative properties is quercetin. This study investigated the effect of quercetin in overcoming the side effects incurred due to rilpivirine administration. The results show substantial reduction in the accumulation of triglyceride levels in a dose- and time-dependent manner for adipose cells treated with either rilpivirine or quercetin alone and in combination, as evidenced by morphological pictures and quantitative measurement of triglycerides throughout the differentiation process. Levels of inflammatory markers such as resistin and IL-8 were increased as compared to the untreated cells. No significant changes in leptin were observed on treatment of adipose cells with rilpivirine alone and its levels were almost comparable to control. Levels of oxidative markers like superoxide dismutase, catalase, and glutathione were also decreased. Treatment with quercetin showed a decrease in the inflammatory status and an increase in the oxidative status of adipose cells, thereby exhibiting its anti-inflammatory and anti-oxidative properties. However, further assessment of lipid metabolism and adipose tissue function in patients administered with rilpivirine-based regimes is advisable considering that totally neutral effects of rilpivirine on lipid homeostasis cannot be anticipated from the current study in vitro. It is concluded that rilpivirine causes an anti-adipogenic and pro-inflammatory response pattern but only at high concentrations, whereas quercetin has been observed to decrease inflammation and restore the levels of anti-oxidant enzymes.


Assuntos
Inflamação/tratamento farmacológico , Quercetina/farmacologia , Rilpivirina/farmacologia , Gordura Subcutânea/efeitos dos fármacos , Fármacos Anti-HIV/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Apoio Nutricional , Estresse Oxidativo/efeitos dos fármacos , Gordura Subcutânea/imunologia , Gordura Subcutânea/metabolismo
8.
BMC Vet Res ; 16(1): 458, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228660

RESUMO

BACKGROUND: Dehydration has deleterious effects in many species, but camels tolerate long periods of water deprivation without serious health compromise. The kidney plays crucial role in water conservation, however, some reports point to elevated kidney function tests in dehydrated camels. In this work, we investigated the effects of dehydration and rehydration on kidney cortex and medulla with respect to pro-inflammatory markers, oxidative stress and apoptosis along with corresponding gene expression. RESULTS: The cytokines IL-1ß and IL-18 levels were significantly elevated in the kidney cortex of dehydrated camel, possibly expressed by tubular epithelium, podocytes and/or mesangial cells. Elevation of IL-18 persisted after rehydration. Dehydration induced oxidative stress in kidney cortex evident by significant increases in MDA and GSH, but significant decreases in SOD and CAT. In the medulla, CAT decreased significantly, but MDA, GSH and SOD levels were not affected. Rehydration abolished the oxidative stress. In parallel with the increased levels of MDA, we observed increased levels of PTGS1 mRNA, in MDA synthesis pathway. GCLC mRNA expression level, involved in GSH synthesis, was upregulated in kidney cortex by rehydration. However, both SOD1 and SOD3 mRNA levels dropped, in parallel with SOD activity, in the cortex by dehydration. There were significant increases in caspases 3 and 9, p53 and PARP1, indicating apoptosis was triggered by intrinsic pathway. Expression of BCL2l1 mRNA levels, encoding for BCL-xL, was down regulated by dehydration in cortex. CASP3 expression level increased significantly in medulla by dehydration and continued after rehydration whereas TP53 expression increased in cortex by rehydration. Changes in caspase 8 and TNF-α were negligible to instigate extrinsic apoptotic trail. Generally, apoptotic markers were extremely variable after rehydration indicating that animals did not fully recover within three days. CONCLUSIONS: Dehydration causes oxidative stress in kidney cortex and apoptosis in cortex and medulla. Kidney cortex and medulla were not homogeneous in all parameters investigated indicating different response to dehydration/rehydration. Some changes in tested parameters directly correlate with alteration in steady-state mRNA levels.


Assuntos
Camelus/fisiologia , Desidratação/veterinária , Rim/fisiopatologia , Privação de Água/fisiologia , Animais , Apoptose/fisiologia , Desidratação/fisiopatologia , Hidratação/veterinária , Inflamação/veterinária , Masculino , Estresse Oxidativo
9.
Pharmacopsychiatry ; 53(3): 115-121, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32000269

RESUMO

INTRODUCTION: Compliance with sublingual buprenorphine/naloxone (SL-BUP/NX) is associated with higher abstinence from illicit opioid use. Therapeutic drug monitoring (TDM) has been recommended for adherence monitoring of buprenorphine (BUP) maintenance treatment for opioid use disorder (OUD), but to date there have been no reported clinical applications. In this TDM feasibility study, we investigated BUP assay precision in 15 adults with OUD who had been stabilized on buprenorphine/naloxone. METHODS: Using solid phase extraction, BUP recovery was contrasted at 100 mMol and 1 Molar of acetic acid wash solution. Precision was determined by applying the condition generating highest recovery using 0.2 ng/mL and 10 ng/mL standards. Four blood samples were drawn to examine the BUP peak and trough plasma concentrations, and BUP elimination rate was estimated. BUP recovery was examined again in a random sample and contrasted with the concentration predicted applying first-order kinetics. RESULTS: Higher BUP recovery was achieved with 1 Molar wash (94.3%; p=0.05). Precision ranged from 15-20%. The estimated limit of detection (LoD) and limit of quantitation (LoQ) were 0.02 and 0.069 ng/mL, respectively. BUP peak and trough concentrations were successfully examined, and BUP trough concentrations were replicated confirming steady state. BUP concentrations were predicted at a variance of -7.20% to 1.54 %. CONCLUSIONS: TDM for BUP maintenance treatment of OUD is feasible, and simple adjustment of the assay conditions enhances BUP recovery.


Assuntos
Combinação Buprenorfina e Naloxona/uso terapêutico , Monitoramento de Medicamentos/métodos , Antagonistas de Entorpecentes/uso terapêutico , Transtornos Relacionados com Narcóticos/reabilitação , Administração Sublingual , Adulto , Combinação Buprenorfina e Naloxona/efeitos adversos , Combinação Buprenorfina e Naloxona/sangue , Método Duplo-Cego , Estudos de Viabilidade , Humanos , Taxa de Depuração Metabólica , Antagonistas de Entorpecentes/efeitos adversos , Antagonistas de Entorpecentes/sangue , Transtornos Relacionados com Narcóticos/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade
10.
J Med Internet Res ; 22(7): e17508, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348265

RESUMO

BACKGROUND: Over the last century, disruptive incidents in the fields of clinical and biomedical research have yielded a tremendous change in health data management systems. This is due to a number of breakthroughs in the medical field and the need for big data analytics and the Internet of Things (IoT) to be incorporated in a real-time smart health information management system. In addition, the requirements of patient care have evolved over time, allowing for more accurate prognoses and diagnoses. In this paper, we discuss the temporal evolution of health data management systems and capture the requirements that led to the development of a given system over a certain period of time. Consequently, we provide insights into those systems and give suggestions and research directions on how they can be improved for a better health care system. OBJECTIVE: This study aimed to show that there is a need for a secure and efficient health data management system that will allow physicians and patients to update decentralized medical records and to analyze the medical data for supporting more precise diagnoses, prognoses, and public insights. Limitations of existing health data management systems were analyzed. METHODS: To study the evolution and requirements of health data management systems over the years, a search was conducted to obtain research articles and information on medical lawsuits, health regulations, and acts. These materials were obtained from the Institute of Electrical and Electronics Engineers, the Association for Computing Machinery, Elsevier, MEDLINE, PubMed, Scopus, and Web of Science databases. RESULTS: Health data management systems have undergone a disruptive transformation over the years from paper to computer, web, cloud, IoT, big data analytics, and finally to blockchain. The requirements of a health data management system revealed from the evolving definitions of medical records and their management are (1) medical record data, (2) real-time data access, (3) patient participation, (4) data sharing, (5) data security, (6) patient identity privacy, and (7) public insights. This paper reviewed health data management systems based on these 7 requirements across studies conducted over the years. To our knowledge, this is the first analysis of the temporal evolution of health data management systems giving insights into the system requirements for better health care. CONCLUSIONS: There is a need for a comprehensive real-time health data management system that allows physicians, patients, and external users to input their medical and lifestyle data into the system. The incorporation of big data analytics will aid in better prognosis or diagnosis of the diseases and the prediction of diseases. The prediction results will help in the development of an effective prevention plan.


Assuntos
Pesquisa Biomédica/métodos , Gerenciamento de Dados/métodos , Atenção à Saúde/métodos , Humanos
11.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081327

RESUMO

Parkinson's disease, the second common neurodegenerative disease is clinically characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with upregulation of neuroinflammatory markers and oxidative stress. Autophagy lysosome pathway (ALP) plays a major role in degradation of damaged organelles and proteins for energy balance and intracellular homeostasis. However, dysfunction of ALP results in impairment of α-synuclein clearance which hastens dopaminergic neurons loss. In this study, we wanted to understand the neuroprotective efficacy of Val in rotenone induced PD rat model. Animals received intraperitoneal injections (2.5 mg/kg) of rotenone daily followed by Val (40 mg/kg, i.p) for four weeks. Valeric acid, a straight chain alkyl carboxylic acid found naturally in Valeriana officianilis have been used in the treatment of neurological disorders. However, their neuroprotective efficacy has not yet been studied. In our study, we found that Val prevented rotenone induced upregulation of pro-inflammatory cytokine oxidative stress, and α-synuclein expression with subsequent increase in vital antioxidant enzymes. Moreover, Val mitigated rotenone induced hyperactivation of microglia and astrocytes. These protective mechanisms prevented rotenone induced dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Additionally, Val treatment prevented rotenone blocked mTOR-mediated p70S6K pathway as well as apoptosis. Moreover, Val prevented rotenone mediated autophagic vacuole accumulation and increased lysosomal degradation. Hence, Val could be further developed as a potential therapeutic candidate for treatment of PD.


Assuntos
Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Autofagia , Neurônios Dopaminérgicos/efeitos dos fármacos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Ácidos Pentanoicos/farmacologia , Animais , Antioxidantes/uso terapêutico , Antiparkinsonianos/uso terapêutico , Apoptose , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Masculino , Doença de Parkinson/etiologia , Ácidos Pentanoicos/uso terapêutico , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Rotenona/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Desacopladores/toxicidade , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321809

RESUMO

The term ionone is derived from "iona" (Greek for violet) which refers to the violet scent and "ketone" due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of ß-carotene by ß-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and ß-pinene into α-and ß-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that ß-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. ß-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. ß-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and ß-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet's fragrance.


Assuntos
Norisoprenoides/química , Norisoprenoides/farmacologia , Odorantes , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Vias Biossintéticas , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fenômenos Químicos , Técnicas de Química Sintética , Mediadores da Inflamação/metabolismo , Norisoprenoides/metabolismo , Ligação Proteica , Receptores Odorantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Molecules ; 25(19)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007969

RESUMO

Physiological Glucocorticoids are important regulators of the immune system. Pharmacological GCs are in widespread use to treat inflammatory diseases. Adrenalectomy (ADX) has been shown to exacerbate renal injury through inflammation and oxidative stress that results in renal impairment due to depletion of GCs. In this study, the effect of myrcene to attenuate renal inflammation and oxidative stress was evaluated in the adrenalectomized rat model. Rats were adrenalectomized bilaterally or the adrenals were not removed after surgery (sham). Myrcene (50 mg/kg body weight, orally) was administered post ADX. Myrcene treatment resulted in significant downregulation of pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α) compared to untreated ADX rats. In addition, myrcene resulted in significant downregulation of immunomodulatory factors (IFNγ and NF-κB) and anti-inflammatory markers (IL-4 and IL-10) in treated ADX compared to untreated ADX. Myrcene significantly increased the antioxidant molecules (CAT, GSH, and SOD) and decreased MDA levels in treated ADX compared to untreated. Moreover, myrcene treatment reduced the expression of COX-2, iNOS, KIM-1, and kidney functional molecules (UREA, LDH, total protein, and creatinine) in ADX treated compared to ADX untreated. These results suggest that myrcene could be further developed as a therapeutic drug for treatment of kidney inflammation and injury.


Assuntos
Monoterpenos Acíclicos/farmacologia , Adrenalectomia , Alcenos/farmacologia , Inflamação/patologia , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Moléculas de Adesão Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Fatores Imunológicos/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Wistar , Superóxido Dismutase/metabolismo
14.
Molecules ; 25(18)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962260

RESUMO

This work demonstrates synthetic strategies for the incorporation of a synthesized pyrimidine glucagon-like peptide-1 (GLP-1) agonist into alginate-coated ZIF-8. The prepared pyrimidine GLP-1 agonist used for the treatment of diabetes type II, was trapped inside polymer coated ZIF-8. The encapsulation of the GLP-1 agonist was confirmed by UV-visible and FT-IR spectroscopies. Furthermore, the release kinetics of GLP-1 agonist drug from alginate-coated ZIF-8 were investigated in phosphate-buffered saline at 37 °C at pH 8 and 1.5. The alginate-coated ZIF-8 exhibited much faster drug release at basic pH than at pH 1.5, indicating the potential of the alginate-coated ZIF-8 system to overcome the fast degradation at acidic pH of the stomach and improve the drug's activity. This study may open the way for the synthesis of new metal organic frameworks (MOFs) to enhance drug delivery systems.


Assuntos
Alginatos/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Imidazóis/química , Estruturas Metalorgânicas/química , Pirimidinas/química , Alginatos/metabolismo , Glicemia/metabolismo , Materiais Revestidos Biocompatíveis/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Zinco/química , Zinco/metabolismo
15.
Mol Cell Biochem ; 455(1-2): 109-118, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30478677

RESUMO

We investigated the effects of 20 days of dehydration and 20 days of dehydration followed by 72 h of rehydration on the gastric mucosa of the one-humped dromedary camel. The parameters addressed include biomarkers of oxidative stress, apoptosis, gastric epithelial histology, gastric neuropeptides, and their receptors. Nineteen clinically healthy, 4-5 year-old male dromedary camels were divided into three groups (five control camels, eight dehydrated for 20 days, six dehydrated for 20 days and then rehydrated for 72 h). Dehydration affected the oxidative stress biomarkers causing a significant increase in malondialdehyde, glutathione, nitric oxide, and catalase values compared with controls. Also the results revealed that dehydration caused different size cellular vacuoles and focal necrosis in the gastric mucosa. Rehydration for 72 h resulted in improvement in some parameters but was not enough to fully abolish the effect of dehydration. Dehydration caused significant increase in apoptotic markers; tumor necrosis factor α, caspases 8 and 3, BcL-x1 and TGFß whereas caspase 9, p53, Beclin 1, and PARP1 showed no significant change between the three groups indicating that apoptosis was initiated by the extrinsic pathway. Also there were significant increases in prostaglandin E2 receptors and somatostatin in plasma and gastric epithelium homogenate, and a significant decrease in cholecystokinin-8 receptors. A significant decrease of hydrogen potassium ATPase enzyme activity was also observed. Pepsinogen C was not affected by dehydration. It is concluded that long-term dehydration induces oxidative stress and apoptosis in camel gastric mucosa and that camels adjust gastric functions during dehydration towards water economy. More than 72 h are needed before all the effects of dehydration are reversed by rehydration.


Assuntos
Apoptose , Camelus/metabolismo , Desidratação/metabolismo , Mucosa Gástrica/metabolismo , Neuropeptídeos/metabolismo , Estresse Oxidativo , Animais , Biomarcadores/metabolismo , Desidratação/patologia , Desidratação/veterinária , Mucosa Gástrica/patologia , Masculino
16.
Mol Biol Rep ; 46(3): 2643-2655, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30927158

RESUMO

Rilpivirine is a non-nucleoside reverse transcriptase inhibitor, recently developed as a drug of choice for initial anti-retroviral (ARV) treatment of HIV-1 infection, whereas estradiol is a major component of hormonal contraceptives. Both drugs have effects on lipid metabolism, impairment of adipocyte differentiation and alteration of adipose tissue distribution and function.This study investigated the effects of different concentrations of either rilpivirine or estradiol either alone or in combination on adipocyte differentiation and adipocytokines status in vitro in the absence and presence of ß-naphthoflavone, (BNF),a potent agonist of the aryl hydrocarbon receptor. 3T3-L1 human pre-adipocytes were cultured and differentiated with different concentrations of treatment drugs. After 10 days of differentiation procedure, cells were examined for their morphology and viability. Glycerol,adiponectin, leptin, resistin and interleukin-8 (IL-8) were quantified using commercially available kits. The results show that either rilpivirine or estradiol individually or during their combination can evoke significant increases in glycerol release and a concomitant significant decrease of adiponectin from adipocytes. These effects were dose-dependent. The effects of combined treatments were much larger than individual concentration for each drug. Both drugs had little of no effect on leptin levels, except for a small decrease with 10 µM rilpivirine alone or when combined with estradiol. In addition, both drugs evoked small increases in the release of resistin and interleukin-8 with significant values at higher doses compared to untreated adipocytes.When adipocytes were pretreated with BNF, either rilpivirine or, estradiol or when combined evoked a much larger release in glycerol and a much larger decrease in adiponectin compared to the absence of BNF. In contrast, BNF pretreatment had little of no effect on either leptin, resistin or IL-8 metabolism compared to the results obtained in the presence of either rilpivirine or estradiol alone or in combination.These results show that rilpivirine and estradiol either alone or when combined or pretreated with BNF can evoke marked effects on glycerol and cytokines levels from adipocytes. However, their mechanism (s) in inducing adipogenesis warrants further investigation of different transcription factors at gene expression levels.


Assuntos
Adipócitos/efeitos dos fármacos , Estradiol/farmacologia , Rilpivirina/farmacologia , beta-Naftoflavona/farmacologia , Células 3T3-L1/efeitos dos fármacos , Adipogenia/genética , Adipocinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Estradiol/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Leptina/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Rilpivirina/metabolismo , beta-Naftoflavona/metabolismo
17.
Molecules ; 24(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185705

RESUMO

Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.


Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Lycopodium/química , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Metaloproteinases da Matriz/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Degeneração Neural/patologia , Neuroproteção/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos Wistar , Rotenona , Superóxido Dismutase/metabolismo , alfa-Sinucleína/metabolismo
18.
Bioorg Med Chem Lett ; 27(22): 5071-5075, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28988756

RESUMO

The therapeutic success of peptide glucagon-like peptide-1 (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small-molecule GLP-1 receptor agonists. In this study, two series of new pyrimidine derivatives were designed and synthesized using an efficient route, and were evaluated in terms of GLP-1 receptor agonist activity. In the first series, novel pyrimidines substituted at positions 2 and 4 with groups varying in size and electronic properties were synthesized in a good yield (78-90%). In the second series, the designed pyrimidine templates included both urea and Schiff base linkers, and these compounds were successfully produced with yields of 77-84%. In vitro experiments with cultured cells showed that compounds 3a and 10a (10-15-10-9M) significantly increased insulin secretion compared to that of the control cells in both the absence and presence of 2.8mM glucose; compound 8b only demonstrated significance in the absence of glucose. These findings represent a valuable starting point for the design and discovery of small-molecule GLP-1 receptor agonists that can be administered orally.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/síntese química , Pirimidinas/química , Animais , Linhagem Celular , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Pirimidinas/síntese química , Pirimidinas/farmacologia
19.
BMC Neurosci ; 17(1): 61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586269

RESUMO

BACKGROUND: Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. RESULTS: Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1ß and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. CONCLUSION: Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.


Assuntos
Medula Suprarrenal/fisiopatologia , Citocinas/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Estresse Oxidativo/fisiologia , Adrenalectomia , Animais , Morte Celular/fisiologia , Corticosterona/sangue , Hipocampo/patologia , Masculino , Modelos Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Wistar , Fatores de Tempo
20.
Mar Drugs ; 14(6)2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27322291

RESUMO

The frondosides are triterpenoid glycosides from the Atlantic sea cucumber Cucumaria frondosa. Frondoside A inhibits growth, invasion, metastases and angiogenesis and induces apoptosis in diverse cancer types, including pancreatic cancer. We compared the growth inhibitory effects of three frondosides and their aglycone and related this to the pharmocokinetics and route of administration. Frondoside A potently inhibited growth of pancreatic cancer cells with an EC50 of ~1 µM. Frondoside B was less potent (EC50 ~2.5 µM). Frondoside C and the aglycone had no effect. At 100 µg/kg, frondoside A administered to CD2F1 mice as an i.v. bolus, the Cpmax was 129 nM, Cltb was 6.35 mL/min/m², and half-life was 510 min. With i.p. administration the Cpmax was 18.3 nM, Cltb was 127 mL/min/m² and half-life was 840 min. Oral dosing was ineffective. Frondoside A (100 µg/kg/day i.p.) markedly inhibited growth cancer xenografts in nude mice. The same dose delivered by oral gavage had no effect. No evidence of acute toxicity was seen with frondoside A. Frondoside A is more potent inhibitor of cancer growth than other frondosides. The glycoside component is essential for bioactivity. Frondoside A is only effective when administered systemically. Based on the current and previous studies, frondoside A appears safe and may be valuable in the treatment of cancer.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Glicosídeos/farmacologia , Glicosídeos/farmacocinética , Neoplasias Pancreáticas/tratamento farmacológico , Triterpenos/farmacologia , Triterpenos/farmacocinética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/metabolismo , Pepinos-do-Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA