Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(6): 3091-3100, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38251395

RESUMO

Lattice thermal conductivity (κ) in tungsten dichalcogenide Janus (WXY, where X, Y = S, Se, and Te) monolayers and heterostructures (HSs) have been investigated using ab initio DFT simulations. Tungsten-based Janus monolayers show semiconducting behavior with the bandgap in the semiconducting range for WSSe (1.70 eV), WSTe (1.26 eV), and WSeTe (1.34 eV). When Janus monolayers are stacked to form HSs with weak van der Waals (vdW) interactions, the bandgap reduces to 0.19 eV, 0.40 eV, and 0.24 eV, respectively, for WSeTe/WSTe, WSSe/WSTe, and WSSe/WSeTe HSs. Thermal vibrational characteristics of Janus monolayers are modified when these are stacked in 2D HSs with the introduction of interlayer hybrid phonon modes. Large longitudinal-transverse optical (LO-TO) splitting is noticed at the Brillouin zone-center (Γ-point): 135 cm-1, 140 cm-1, and 150 cm-1 for WSeTe/WSTe, WSSe/WSeTe and WSSe/WSTe HSs, respectively. Thermal conductivity calculations show ultra-low κ values for WSeTe/WSTe (0.01 W m-1 K-1), WSSe/WSTe (0.02 W m-1 K-1) and WSSe/WSeTe HS (0.004 W m-1 K-1) at 300 K. The results can be attributed to the hybrid phonon modes with frequencies very close to acoustic modes at the gamma point, low Debye temperature (θD) and specific heat capacity. Our results highlight the possible applications of these HSs in designing thermoelectric interfaces at the nanoscale.

2.
PLoS One ; 18(3): e0275765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928801

RESUMO

Human pancreatic α-amylase (HPA), which works as a catalyst for carbohydrate hydrolysis, is one of the viable targets to control type 2 diabetes. The inhibition of α-amylase lowers blood glucose levels and helps to alleviate hyperglycemia complications. Herein, we systematically screened the potential HPA inhibitors from a library of natural products by molecular modeling. The modeling encompasses molecular docking, MM/GBSA binding energy calculations, MD simulations, and ADMET analysis. This research identified newboulaside B, newboulaside A, quercetin-3-O-ß-glucoside, and sasastilboside A as the top four potential HPA inhibitors from the library of natural products, whose Glide docking scores and MM/GBSA binding energies range from -9.191 to -11.366 kcal/mol and -19.38 to -77.95 kcal/mol, respectively. Based on the simulation, among them, newboulaside B was found as the best HPA inhibitor. Throughout the simulation, with the deviation of 3Å (acarbose = 3Å), it interacted with ASP356, ASP300, ASP197, THR163, ARG161, ASP147, ALA106, and GLN63 via hydrogen bonding. Additionally, the comprehensive ADMET analysis revealed that it has good pharmacokinetic properties having not acutely toxic, moderately bioavailable, and non-inhibitor nature toward cytochrome P450. All the results suggest that newboulaside B might be a promising candidate for drug discovery against type 2 diabetes.


Assuntos
Produtos Biológicos , Diabetes Mellitus Tipo 2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Produtos Biológicos/farmacologia , Simulação por Computador , Simulação de Dinâmica Molecular
3.
J Mol Model ; 29(7): 200, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269432

RESUMO

We studied the electronic and magnetic properties of wurtzite GaN (w-GaN) doped with different concentrations of the 4d transition metal ions Nb, Mo, and Ru. We incorporated spin-polarized plane-wave density functional theory within an ultrasoft pseudopotential formalism. The 4d transition metals were doped at different geometrical sites to determine the geometry with the lowest total energy and the one that induced the largest magnetization. A spin-spin interaction study was performed to determine whether the doped compound was ferromagnetic or antiferromagnetic. The origin of magnetization in the transition metal-doped w-GaN compounds is due to the p-d hybridization of the nitrogen and 4d transition metals. From the bulk modulus results, we inferred that the structural integrity is preserved under compressive loads after doping w-GaN with these 4d transition metal ions. Our results indicate that these compounds can be used in spintronic applications.

4.
J Biomol Struct Dyn ; 41(3): 897-911, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957911

RESUMO

Breast cancer is the most common cancer among women around the world. Human Epidermal growth factor Receptor-2 (HER2) is a membrane tyrosine kinase overexpressed in 30% of human breast cancers; thus, it serves as an important drug target. Currently available HER2 inhibitor lapatinib targets the ATP binding site of the cytoplasmic kinase domain, blocking autophosphorylation and activation of HER-2. However, it causes side effects like diarrhea, nausea, rash and possible liver toxicity. As phytochemicals have fewer side effects and are relatively affordable, they offer an effective alternative. Hence, we aimed to identify potential phytochemicals that could act as HER2 inhibitors employing computational methods such as molecular docking, molecular dynamic simulation, and ADMET prediction. Out of 1500 phytochemicals docked to the ATP binding site of the HER2 kinase domain, luxenchalcone, rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone exhibited higher binding affinity than the reference inhibitor and satisfied the Lipinski's rule of five. Analysis of molecular dynamics simulation trajectory showed that Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone formed a stable and compact complex without vast conformational fluctuations. MM/PBSA binding free energy analysis revealed that Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone have high binding affinity to HER2. Therefore, Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone could be potential bioactive molecules to act as inhibitor of HER2 protein. Eventually, experimental studies are needed to evaluate the potentials of these phytochemicals further. The development of drug for HER2 positive breast cancer could be accelerated with the findings of our research. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , Detecção Precoce de Câncer , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Simulação de Dinâmica Molecular , Trifosfato de Adenosina , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA