Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Magn Reson Med ; 87(6): 2957-2971, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35081261

RESUMO

PURPOSE: While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data. METHODS: We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered. RESULTS: The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions). CONCLUSION: Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.


Assuntos
Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Magn Reson Med ; 84(6): 3071-3087, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32492235

RESUMO

PURPOSE: To develop a whole-heart, free-breathing, non-electrocardiograph (ECG)-gated, cardiac-phase-resolved myocardial perfusion MRI framework (CRIMP; Continuous Radial Interleaved simultaneous Multi-slice acquisitions at sPoiled steady-state) and test its quantification feasibility. METHODS: CRIMP used interleaved radial simultaneous multi-slice (SMS) slice groups to cover the whole heart in 9 or 12 short-axis slices. The sequence continuously acquired data without magnetization preparation, ECG gating or breath-holding, and captured multiple cardiac phases. Images were reconstructed by a motion-compensated patch-based locally low-rank reconstruction. Bloch simulations were performed to study the signal-to-noise ratio/contrast-to-noise ratio (SNR/CNR) for CRIMP and to study the steady-state signal under motion. Seven patients were scanned with CRIMP at stress and rest to develop the sequence. One human and two dogs were scanned at rest with a dual-bolus method to test the quantification feasibility of CRIMP. The dual-bolus scans were performed using both CRIMP and an ungated radial SMS saturation recovery (SMS-SR) sequence with injection dose = 0.075 mmol/kg to compare the sequences in terms of SNR, cardiac phase resolution and quantitative myocardial blood flow (MBF). RESULTS: Perfusion images with multiple cardiac phases in all image slices with a temporal resolution of 72 ms/frame were obtained. Simulations and in-vivo acquisitions showed CRIMP kept the inner slices in steady-state regardless of motion. CRIMP outperformed SMS-SR in slice coverage (9 over 6), SNR (mean 20% improvement), and provided cardiac phase resolution. CRIMP and SMS-SR sequences provided comparable MBF values (rest systolic CRIMP = 0.58 ± 0.07, SMS-SR = 0.61 ± 0.16). CONCLUSION: CRIMP allows for whole-heart, cardiac-phase-resolved myocardial perfusion images without ECG-gating or breath-holding. The sequence can provide MBF if an accurate arterial input function is obtained separately.


Assuntos
Coração , Imageamento por Ressonância Magnética , Algoritmos , Animais , Cães , Coração/diagnóstico por imagem , Humanos , Perfusão , Respiração
3.
Magn Reson Med ; 83(6): 1949-1963, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31670858

RESUMO

PURPOSE: The purpose of this study was to further develop and combine several innovative sequence designs to achieve quantitative 3D myocardial perfusion. These developments include an optimized 3D stack-of-stars readout (150 ms per beat), efficient acquisition of a 2D arterial input function, tailored saturation pulse design, and potential whole heart coverage during quantitative stress perfusion. THEORY AND METHODS: All studies were performed free-breathing on a Prisma 3T MRI scanner. Phantom validation was used to verify sequence accuracy. A total of 21 subjects (3 patients with known disease) were scanned, 12 with a rest only protocol and 9 with both stress (regadenoson) and rest protocols. First pass quantitative perfusion was performed with gadoteridol (0.075 mmol/kg). RESULTS: Implementation and quantitative perfusion results are shown for healthy subjects and subjects with known coronary disease. Average rest perfusion for the 15 included healthy subjects was 0.79 ± 0.19 mL/g/min, the average stress perfusion for 6 healthy subject studies was 2.44 ± 0.61 mL/g/min, and the average global myocardial perfusion reserve ratio for 6 healthy subjects was 3.10 ± 0.24. Perfusion deficits for 3 patients with ischemia are shown. Average resting heart rate was 59 ± 7 bpm and the average stress heart rate was 81 ± 10 bpm. CONCLUSION: This work demonstrates that a quantitative 3D myocardial perfusion sequence with the acquisition of a 2D arterial input function is feasible at high stress heart rates such as during stress. T1 values and gadolinium concentrations of the sequence match the reference standard well in a phantom, and myocardial rest and stress perfusion and myocardial perfusion reserve values are consistent with those published in literature.


Assuntos
Circulação Coronária , Imagem de Perfusão do Miocárdio , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Perfusão , Imagens de Fantasmas
4.
Magn Reson Med ; 81(4): 2399-2411, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30426558

RESUMO

PURPOSE: To develop a robust multidimensional deep-learning based method to simultaneously generate accurate neurite orientation dispersion and density imaging (NODDI) and generalized fractional anisotropy (GFA) parameter maps from undersampled q-space datasets for use in stroke imaging. METHODS: Traditional diffusion spectrum imaging (DSI) capable of producing accurate NODDI and GFA parameter maps requires hundreds of q-space samples which renders the scan time clinically untenable. A convolutional neural network (CNN) was trained to generated NODDI and GFA parameter maps simultaneously from 10× undersampled q-space data. A total of 48 DSI scans from 15 stroke patients and 14 normal subjects were acquired for training, validating, and testing this method. The proposed network was compared to previously proposed voxel-wise machine learning based approaches for q-space imaging. Network-generated images were used to predict stroke functional outcome measures. RESULTS: The proposed network achieves significant performance advantages compared to previously proposed machine learning approaches, showing significant improvements across image quality metrics. Generating these parameter maps using CNNs also comes with the computational benefits of only needing to generate and train a single network instead of multiple networks for each parameter type. Post-stroke outcome prediction metrics do not appreciably change when using images generated from this proposed technique. Over three test participants, the predicted stroke functional outcome scores were within 1-6% of the clinical evaluations. CONCLUSIONS: Estimates of NODDI and GFA parameters estimated simultaneously with a deep learning network from highly undersampled q-space data were improved compared to other state-of-the-art methods providing a 10-fold reduction scan time compared to conventional methods.


Assuntos
Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética , Redes Neurais de Computação , Neuritos/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Idoso , Algoritmos , Anisotropia , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Resultado do Tratamento
5.
Magn Reson Med ; 79(5): 2745-2751, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28921631

RESUMO

PURPOSE: To validate an optimal 12-fold accelerated real-time cine MRI pulse sequence with radial k-space sampling and compressed sensing (CS) in patients at 1.5T and 3T. METHODS: We used two strategies to reduce image artifacts arising from gradient delays and eddy currents in radial k-space sampling with balanced steady-state free precession readout. We validated this pulse sequence against a standard breath-hold cine sequence in two patient cohorts: a myocardial infarction (n = 16) group at 1.5T and chronic kidney disease group (n = 18) at 3T. Two readers independently performed visual analysis of 68 cine sets in four categories (myocardial definition, temporal fidelity, artifact, noise) on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = adequate or moderate, 4 = good, 5 = excellent). Another reader calculated left ventricular (LV) functional parameters, including ejection fraction. RESULTS: Compared with standard cine, real-time cine produced nonsignificantly different visually assessed scores, except for the following categories: 1) temporal fidelity scores were significantly lower (P = 0.013) for real-time cine at both field strengths, 2) artifacts scores were significantly higher (P = 0.013) for real-time cine at both field strengths, and 3) noise scores were significantly (P = 0.013) higher for real-time cine at 1.5T. Standard and real-time cine pulse sequences produced LV functional parameters that were in good agreement (e.g., absolute mean difference in ejection fraction <4%). CONCLUSION: This study demonstrates that an optimal 12-fold, accelerated, real-time cine MRI pulse sequence using radial k-space sampling and CS produces good to excellent visual scores and relatively accurate LV functional parameters in patients at 1.5T and 3T. Magn Reson Med 79:2745-2751, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Magn Reson Imaging ; 43(6): 1369-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26663511

RESUMO

PURPOSE: To evaluate the interstudy repeatability of multislice quantitative cardiovascular magnetic resonance myocardial blood flow (MBF), myocardial perfusion reserve (MPR), and extracellular volume (ECV). A unique saturation recovery self-gated acquisition was used for the perfusion scans. MATERIALS AND METHODS: An ungated golden angle radial turboFLASH pulse sequence was used to scan 10 subjects on two separate days on a 3T scanner. A single saturation pulse was followed by a set of four slices. Rest and hyperemia scans were acquired during free breathing. The images were reconstructed using an iterative algorithm with spatiotemporal constraints. The ungated images were retrospectively binned (self-gated) into near-systole and near-diastole. Deformable registration was performed to adjust for respiratory and residual cardiac motion, and the data were fit with a Fermi model to estimate the interstudy repeatability of quantitative self-gated MBF and MPR. RESULTS: The coefficient of variation (CoV) of the territorial MPR using the self-gated near-systole data was 18.6%. The self-gated near-diastole data gave less good CoV of MPR, equal to 46.2%. For MBFs, and using smaller (segmental) regions, the CoVs were 20.1% and 22.7% for the estimation of myocardial blood flow at stress and rest, respectively, using the self-gated near-systole data. The self-gated near-diastole data gave CoV = 48.6% and 44.9% for stress and rest. CONCLUSION: The self-gated free-breathing technique for quantification of myocardial blood flow showed good repeatability for near-systole, with results comparable to published studies on interstudy repeatability of quantitative myocardial perfusion MRI using ECG-gating and breath-holds. Self-gated near-diastole data results were less repeatable. J. Magn. Reson. Imaging 2016;43:1369-1378.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Técnicas de Imagem de Sincronização Cardíaca/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/fisiopatologia , Circulação Coronária/fisiologia , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Magn Reson Med ; 74(4): 1070-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25285855

RESUMO

PURPOSE: Highly undersampled three-dimensional (3D) saturation-recovery sequences are affected by k-space trajectory since the magnetization does not reach steady state during the acquisition and the slab excitation profile yields different flip angles in different slices. This study compares centric and reverse-centric 3D cardiac perfusion imaging. METHODS: An undersampled (98 phase encodes) 3D ECG-gated saturation-recovery sequence that alternates centric and reverse-centric acquisitions each time frame was used to image phantoms and in vivo subjects. Flip angle variation across the slices was measured, and contrast with each trajectory was analyzed via Bloch simulation. RESULTS: Significant variations in flip angle were observed across slices, leading to larger signal variation across slices for the centric acquisition. In simulation, severe transient artifacts were observed when using the centric trajectory with higher flip angles, placing practical limits on the maximum flip angle used. The reverse-centric trajectory provided less contrast, but was more robust to flip angle variations. CONCLUSION: Both of the k-space trajectories can provide reasonable image quality. The centric trajectory can have higher CNR, but is more sensitive to flip angle variation. The reverse-centric trajectory is more robust to flip angle variation.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
Magn Reson Med ; 73(4): 1643-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24753213

RESUMO

PURPOSE: To investigate algebraic reconstruction technique (ART) for parallel imaging reconstruction of radial data, applied to accelerated cardiac cine. METHODS: A graphics processing unit (GPU)-accelerated ART reconstruction was implemented and applied to simulations, point spread functions and in 12 subjects imaged with radial cardiac cine acquisitions. Cine images were reconstructed with radial ART at multiple undersampling levels (192 Nr × Np = 96 to 16). Images were qualitatively and quantitatively analyzed for sharpness and artifacts, and compared to filtered back-projection, and conjugate gradient SENSE. RESULTS: Radial ART provided reduced artifacts and mainly preserved spatial resolution, for both simulations and in vivo data. Artifacts were qualitatively and quantitatively less with ART than filtered back-projection using 48, 32, and 24 Np , although filtered back-projection provided quantitatively sharper images at undersampling levels of 48-24 Np (all P < 0.05). Use of undersampled radial data for generating auto-calibrated coil-sensitivity profiles resulted in slightly reduced quality. ART was comparable to conjugate gradient SENSE. GPU-acceleration increased ART reconstruction speed 15-fold, with little impact on the images. CONCLUSION: GPU-accelerated ART is an alternative approach to image reconstruction for parallel radial MR imaging, providing reduced artifacts while mainly maintaining sharpness compared to filtered back-projection, as shown by its first application in cardiac studies.


Assuntos
Algoritmos , Ventrículos do Coração/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Estatísticos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
10.
J Cardiovasc Magn Reson ; 17: 14, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25827080

RESUMO

BACKGROUND: Current myocardial perfusion measurements make use of an ECG-gated pulse sequence to track the uptake and washout of a gadolinium-based contrast agent. The use of a gated acquisition is a problem in situations with a poor ECG signal. Recently, an ungated perfusion acquisition was proposed but it is not known how accurately quantitative perfusion estimates can be made from such datasets that are acquired without any triggering signal. METHODS: An undersampled saturation recovery radial turboFLASH pulse sequence was used in 7 subjects to acquire dynamic contrast-enhanced images during free-breathing. A single saturation pulse was followed by acquisition of 4-5 slices after a delay of ~40 msec. This was repeated without pause and without any type of gating. The same pulse sequence, with ECG-gating, was used to acquire gated data as a ground truth. An iterative spatio-temporal constrained reconstruction was used to reconstruct the undersampled images. After reconstruction, the ungated images were retrospectively binned ("self-gated") into two cardiac phases using a region of interest based technique and deformably registered into near-systole and near-diastole. The gated and the self-gated datasets were then quantified with standard methods. RESULTS: Regional myocardial blood flow estimates (MBFs) obtained using self-gated systole (0.64 ± 0.26 ml/min/g), self-gated diastole (0.64 ± 0.26 ml/min/g), and ECG-gated scans (0.65 ± 0.28 ml/min/g) were similar. Based on the criteria for interchangeable methods listed in the statistical analysis section, the MBF values estimated from self-gated and gated methods were not significantly different. CONCLUSION: The self-gated technique for quantification of regional myocardial perfusion matched ECG-gated perfusion measurements well in normal subjects at rest. Self-gated systolic perfusion values matched ECG-gated perfusion values better than did diastolic values.


Assuntos
Circulação Coronária , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Velocidade do Fluxo Sanguíneo , Técnicas de Imagem de Sincronização Cardíaca , Meios de Contraste , Eletrocardiografia , Gadolínio , Voluntários Saudáveis , Compostos Heterocíclicos , Humanos , Contração Miocárdica , Compostos Organometálicos , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Respiração
11.
Tomography ; 10(5): 660-673, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787011

RESUMO

Background: The arterial input function (AIF) is vital for myocardial blood flow quantification in cardiac MRI to indicate the input time-concentration curve of a contrast agent. Inaccurate AIFs can significantly affect perfusion quantification. Purpose: When only saturated and biased AIFs are measured, this work investigates multiple ways of leveraging tissue curve information, including using AIF + tissue curves as inputs and optimizing the loss function for deep neural network training. Methods: Simulated data were generated using a 12-parameter AIF mathematical model for the AIF. Tissue curves were created from true AIFs combined with compartment-model parameters from a random distribution. Using Bloch simulations, a dictionary was constructed for a saturation-recovery 3D radial stack-of-stars sequence, accounting for deviations such as flip angle, T2* effects, and residual longitudinal magnetization after the saturation. A preliminary simulation study established the optimal tissue curve number using a bidirectional long short-term memory (Bi-LSTM) network with just AIF loss. Further optimization of the loss function involves comparing just AIF loss, AIF with compartment-model-based parameter loss, and AIF with compartment-model tissue loss. The optimized network was examined with both simulation and hybrid data, which included in vivo 3D stack-of-star datasets for testing. The AIF peak value accuracy and ktrans results were assessed. Results: Increasing the number of tissue curves can be beneficial when added tissue curves can provide extra information. Using just the AIF loss outperforms the other two proposed losses, including adding either a compartment-model-based tissue loss or a compartment-model parameter loss to the AIF loss. With the simulated data, the Bi-LSTM network reduced the AIF peak error from -23.6 ± 24.4% of the AIF using the dictionary method to 0.2 ± 7.2% (AIF input only) and 0.3 ± 2.5% (AIF + ten tissue curve inputs) of the network AIF. The corresponding ktrans error was reduced from -13.5 ± 8.8% to -0.6 ± 6.6% and 0.3 ± 2.1%. With the hybrid data (simulated data for training; in vivo data for testing), the AIF peak error was 15.0 ± 5.3% and the corresponding ktrans error was 20.7 ± 11.6% for the AIF using the dictionary method. The hybrid data revealed that using the AIF + tissue inputs reduced errors, with peak error (1.3 ± 11.1%) and ktrans error (-2.4 ± 6.7%). Conclusions: Integrating tissue curves with AIF curves into network inputs improves the precision of AI-driven AIF corrections. This result was seen both with simulated data and with applying the network trained only on simulated data to a limited in vivo test dataset.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Meios de Contraste , Circulação Coronária/fisiologia , Simulação por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
12.
Magn Reson Med ; 70(2): 429-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23023738

RESUMO

The practical utility of diffusion tensor imaging, especially for 3D high-resolution spin warp experiments of ex vivo specimens, has been hampered by long acquisition times. To accelerate the acquisition, a compressed sensing framework that uses a model-based formulation to reconstruct diffusion tensor fields from undersampled k-space data was presented and evaluated. Accuracies in brain specimen white matter fiber orientation, fractional anisotropy, and mean diffusivity mapping were compared with alternative methods achievable using the same scan time via reduced image resolution, fewer diffusion encoding directions, standard compressed sensing, or asymmetrical sampling reconstruction. The efficiency of the proposed approach was also compared with fully sampled cases across a range of the number of diffusion encoding directions. In general, the proposed approach was found to reduce the image blurring and noise and to provide more accurate fiber orientation, fractional anisotropy, and mean diffusivity measurements compared with the alternative methods. Moreover, depending on the degree of undersampling used and the diffusion tensor imaging parameter examined, the measurement accuracy of the proposed scheme was equivalent to fully sampled diffusion tensor imaging datasets that consist of 33-67% more encoding directions and require proportionally longer scan times. The findings show model-based compressed sensing to be promising for improving the resolution, accuracy, or scan time of diffusion tensor imaging.


Assuntos
Encéfalo/anatomia & histologia , Compressão de Dados/métodos , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Artefatos , Simulação por Computador , Humanos , Macaca , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
13.
Magn Reson Med ; 70(1): 64-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22887290

RESUMO

For patients with impaired breath-hold capacity and/or arrhythmias, real-time cine MRI may be more clinically useful than breath-hold cine MRI. However, commercially available real-time cine MRI methods using parallel imaging typically yield relatively poor spatio-temporal resolution due to their low image acquisition speed. We sought to achieve relatively high spatial resolution (∼2.5 × 2.5 mm(2)) and temporal resolution (∼40 ms), to produce high-quality real-time cine MR images that could be applied clinically for wall motion assessment and measurement of left ventricular function. In this work, we present an eightfold accelerated real-time cardiac cine MRI pulse sequence using a combination of compressed sensing and parallel imaging (k-t SPARSE-SENSE). Compared with reference, breath-hold cine MRI, our eightfold accelerated real-time cine MRI produced significantly worse qualitative grades (1-5 scale), but its image quality and temporal fidelity scores were above 3.0 (adequate) and artifacts and noise scores were below 3.0 (moderate), suggesting that acceptable diagnostic image quality can be achieved. Additionally, both eightfold accelerated real-time cine and breath-hold cine MRI yielded comparable left ventricular function measurements, with coefficient of variation <10% for left ventricular volumes. Our proposed eightfold accelerated real-time cine MRI with k-t SPARSE-SENSE is a promising modality for rapid imaging of myocardial function.


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/fisiopatologia , Adulto , Algoritmos , Suspensão da Respiração , Sistemas Computacionais , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Cardiovasc Magn Reson ; 15: 26, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23537093

RESUMO

BACKGROUND: Myocardial perfusion cardiovascular magnetic resonance (CMR) is a well-established method for detection of ischemic heart disease. However, ECG gating problems can result in image degradation and non-diagnostic scans, particularly in patients with arrhythmias. METHODS: A turboFLASH saturation recovery pulse sequence was used without any ECG triggering. One saturation pulse followed by 4-5 slices of undersampled radial k-space images was acquired rapidly, on the order of 40-50 msec per image. The acquisition of the set of 4-5 slices was continuously repeated approximately 4 times per second. An iterative constrained reconstruction method was used to reconstruct the ungated images. The ungated perfusion images were post-processed into three different sets of images (ungated, self-gated to near systole, and self-gated to near diastole). To test the ungated approach and compare the different processing methods, 8 patients scheduled for coronary angiography underwent stress and rest perfusion imaging with the ungated acquisition. Six patients had a history of atrial fibrillation (AF). Three blinded readers assessed image quality and presence/absence of disease. RESULTS: All 8 subjects successfully completed the perfusion CMR protocol and 7/8 underwent coronary angiography. Three patients were in atrial fibrillation during CMR. Overall, the CMR images were of high quality as assessed by the three readers. There was little difference in image quality between patients in AF compared to those in sinus rhythm (3.6±0.7 vs. 3.3±0.5). Stress/rest perfusion imaging showed normal perfusion in 4 patients, fixed perfusion defects in 2 patients, and reversible perfusion defects in 2 patients, corresponding with angiographic results. Pooled results from the independent readers gave a sensitivity of 0.92 (CI 0.65-0.99) and specificity of 0.92 (CI 0.65-0.99) for the detection of coronary artery disease using ungated perfusion imaging. The same sensitivity, and a specificity of 1 (CI 0.76-1), was achieved when the images were self-gated after acquisition into near systole or near diastole. CONCLUSIONS: Ungated radial dynamic perfusion CMR can give high quality imaging in patients in sinus rhythm and during atrial fibrillation. In this small cohort, high diagnostic accuracy was possible with this rapid perfusion imaging sequence. An ungated approach simplifies the acquisition and could expand the role of perfusion CMR to include patients with arrhythmia and those with gating problems.


Assuntos
Fibrilação Atrial/complicações , Doença da Artéria Coronariana/diagnóstico , Circulação Coronária , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Técnicas de Imagem de Sincronização Cardíaca , Estudos de Casos e Controles , Meios de Contraste , Angiografia Coronária , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/fisiopatologia , Eletrocardiografia , Frequência Cardíaca , Humanos , Interpretação de Imagem Assistida por Computador , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
15.
Med Phys ; 50(12): 7946-7954, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357805

RESUMO

BACKGROUND: The use of a gradient echo spin echo (GESE) method to obtain rapid T2 and T2* estimation in the heart has been proposed. The effect of acquisition parameter settings on T2 and T2* bias and precision have not been investigated in depth. PURPOSE: To understand factors impacting the quantification of T2 and T2* values with a gradient echo spin echo (GESE) method using echo planar imaging (EPI) readouts in a reduced field of view acquisition. METHODS: The GESE method is implemented with a reduced field-of-view using an outer volume suppression (OVS) technique to minimize the time for multi-echo EPI readouts. The number of EPI readouts (images) for the GESE is optimized using Cramer-Rao Lower Bound (CRLB) and Monte Carlo simulations with a nonlinear least-square (NLLS) estimator. The SNR requirements were studied using the latter simulation method for a selected range of T2 and T2* values and T2/T2* ratios. Two healthy control subjects were imaged with the proposed GESE sequence and evaluated with the NLLS estimation method. In addition, the proposed OVS method was compared with a saturation bands OVS method in one subject. Clinical T2 and T2* mappings were used as the reference. RESULTS: The optimal number of EPI readouts is five and the performance is slightly better when the refocusing pulse is placed between the 2nd and 3rd readouts. The SNR requirement for achieving a target bias < 1 ms and standard deviation (SD) < 5 ms is more demanding when T2/T2* ratio increases. The minimum SNR requirement in the GESE acquisition should vary from 6 to 20 depending on specific myocardial T2 and T2* values at 3T. The T2 and T2* estimates using the proposed OVS method and the saturation bands OVS method are both similar to the reference. CONCLUSION: The GESE sequence with five EPI readouts is a feasible and efficient technique that can estimate T2 and T2* values in the septal myocardium within a heartbeat when the SNR requirement can be satisfied.


Assuntos
Imagem Ecoplanar , Coração , Humanos , Imagem Ecoplanar/métodos , Coração/diagnóstico por imagem , Miocárdio , Técnicas de Imagem Cardíaca , Simulação por Computador , Imageamento por Ressonância Magnética/métodos
16.
Magn Reson Imaging ; 98: 7-16, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563888

RESUMO

PURPOSE: To evaluate a novel 2D simultaneous multi-slice (SMS) myocardial perfusion acquisition and compare directly to a published quantitative 3D stack-of-stars (SoS) acquisition. METHODS: A hybrid saturation recovery radial 2D SMS sequence following a single saturation was created for the quantification of myocardial blood flow (MBF). This sequence acquired three slices simultaneously and generated an arterial input function (AIF) using the first 24 rays. Validation was done in a novel way by alternating heartbeats between the hybrid 2D SMS and the 3D SoS acquisitions. Initial studies were done to study the effects of using only every other beat for the 2D SMS in two subjects, and for the 3D SoS in four subjects. The proposed alternating acquisitions were then performed in ten dog studies at rest, four dog studies at adenosine stress, and two human resting studies. Quantitative MBF analysis was performed for 2D SMS and 3D SoS separately, using a compartment model. RESULTS: Acquiring every-other-beat data resulted in 6 ± 5% ("ideal") and 11 ± 8% ("practical") perfusion changes for both 2D SMS and 3D SoS methods. For alternating acquisitions, 2D SMS and 3D SoS quantitative perfusion values were comparable for both the twelve rest studies (2D SMS: 0.69 ± 0.16 vs 3D: 0.69 ± 0.15 ml/g/min, p = 0.55) and the four stress studies (2D SMS: 1.28 ± 0.22 vs 3D: 1.30 ± 0.24 ml/g/min, p = 0.61). CONCLUSION: Every-other-beat acquisition changed estimated perfusion values relatively little for both sequences. The quantitative hybrid radial 2D SMS myocardial first-pass perfusion imaging sequence gave results similar to 3D perfusion when compared directly with an alternating beat acquisition.


Assuntos
Vasos Coronários , Imagem de Perfusão do Miocárdio , Humanos , Animais , Cães , Circulação Coronária , Perfusão , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Imageamento por Ressonância Magnética/métodos
17.
Magn Reson Med ; 67(3): 609-13, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190332

RESUMO

Current myocardial perfusion MRI acquisitions are performed with a saturation recovery sequence, in large part to minimize sensitivity to arrhythmia. A new approach is proposed here where the images are acquired ungated at steady state without use of a saturation pulse. The data are acquired continuously and reach steady state after the first few images. A confluence of advances has made this new paradigm of an ungated steady-state acquisition possible-very rapid undersampled readouts with new reconstruction technologies permit enough measurements that continuous acquisition becomes a feasible approach. Gating can be applied retrospectively from a logged electrocardiogram (ECG) or with self-gating methods. In this work, simulations and measurements in a concentration phantom are used to demonstrate that similar contrast and signal can be obtained with the standard saturation recovery and the proposed spoiled gradient echo (SPGR) acquisition. Specifically, for a flip angle of 14° and a saturation recovery time of 80 ms, similar signals are acquired over a range of T(1) s that reflect realistic myocardial tissue concentrations. Preliminary results in one subject are presented to show the potential of this new approach. The method may allow for cine cardiac perfusion and more signal-to-noise ratio-efficient acquisitions.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Eletrocardiografia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Miocárdio , Imagens de Fantasmas
18.
Med Phys ; 39(8): 5204-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894445

RESUMO

PURPOSE: To determine the feasibility of three-dimensional (3D) hybrid radial (stack-of-stars) MRI with spatiotemporal total variation (TV) constrained reconstruction for dynamic contrast enhanced myocardial perfusion imaging. METHODS: An ECG-triggered saturation recovery turboFLASH sequence with undersampled stack-of-stars sampling with spatiotemporal TV constrained reconstruction was developed for dynamic contrast enhanced myocardial perfusion imaging. Simulations were performed to study the dependence of the approach to steady state on flip angle and saturation recovery time for this stack-of-stars acquisition. Phantom studies were used to show the effect of the flip angle selection and imperfect spoiling on image qualities. Studies were done in three humans to test the feasibility of the approach for myocardial perfusion imaging. RESULTS: The simulation and phantom studies showed that imperfect spoiling and magnetization changes during the readout were a function of flip angle and nonoptimized selection of flip angle could degrade the images. Low flip angle acquisitions in the human subjects result in images with good quality similar to multislice radial 2D images. CONCLUSIONS: 3D stack-of-stars sampling with spatiotemporal TV constrained reconstruction provides a promising alternative for myocardial perfusion imaging.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Miocárdio/patologia , Algoritmos , Simulação por Computador , Eletrocardiografia/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Perfusão , Imagens de Fantasmas , Reprodutibilidade dos Testes , Fatores de Tempo
19.
Med Phys ; 49(11): 6986-7000, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35703369

RESUMO

BACKGROUND: Using the spin-lattice relaxation time (T1) as a biomarker, the myocardium can be quantitatively characterized using cardiac T1 mapping. The modified Look-Locker inversion (MOLLI) recovery sequences have become the standard clinical method for cardiac T1 mapping. However, the MOLLI sequences require an 11-heartbeat breath-hold that can be difficult for subjects, particularly during exercise or pharmacologically induced stress. Although shorter cardiac T1 mapping sequences have been proposed, these methods suffer from reduced precision. As such, there is an unmet need for accelerated cardiac T1 mapping. PURPOSE: To accelerate cardiac T1 mapping MOLLI sequences by using neural networks to estimate T1 maps using a reduced number of T1-weighted images and their corresponding inversion times. MATERIALS AND METHODS: In this retrospective study, 911 pre-contrast T1 mapping datasets from 202 subjects (128 males, 56 ± 15 years; 74 females, 54 ± 17 years) and 574 T1 mapping post-contrast datasets from 193 subjects (122 males, 57 ± 15 years; 71 females, 54 ± 17 years) were acquired using the MOLLI-5(3)3 sequence and the MOLLI-4(1)3(1)2 sequence, respectively. All acquisition protocols used similar scan parameters: T R = 2.2 ms $TR\; = \;2.2\;{\rm{ms}}$ , T E = 1.12 ms $TE\; = \;1.12\;{\rm{ms}}$ , and F A = 35 ∘ $FA\; = \;35^\circ $ , gadoteridol (ProHance, Bracco Diagnostics) dose ∼ 0.075 mmol / kg $\sim 0.075\;\;{\rm{mmol/kg}}$ . A bidirectional multilayered long short-term memory (LSTM) network with fully connected output and cyclic model-based loss was used to estimate T1 maps from the first three T1-weighted images and their corresponding inversion times for pre- and post-contrast T1 mapping. The performance of the proposed architecture was compared to the three-parameter T1 recovery model using the same reduction of the number of T1-weighted images and inversion times. Reference T1 maps were generated from the scanner using the full MOLLI sequences and the three-parameter T1 recovery model. Correlation and Bland-Altman plots were used to evaluate network performance in which each point represents averaged regions of interest in the myocardium corresponding to the standard American Heart Association 16-segment model. The precision of the network was examined using consecutively repeated scans. Stress and rest pre-contrast MOLLI studies as well as various disease test cases, including amyloidosis, hypertrophic cardiomyopathy, and sarcoidosis were also examined. Paired t-tests were used to determine statistical significance with p < 0.05 $p < 0.05$ . RESULTS: Our proposed network demonstrated similar T1 estimations to the standard MOLLI sequences (pre-contrast: 1260 ± 94 ms $1260 \pm 94\;{\rm{ms}}$ vs. 1254 ± 91 ms $1254 \pm 91\;{\rm{ms}}$ with p = 0.13 $p\; = \;0.13$ ; post-contrast: 484 ± 92 ms $484 \pm 92\;{\rm{ms}}$ vs. 493 ± 91 ms $493 \pm 91\;{\rm{ms}}$ with p = 0.07 $p\; = \;0.07$ ). The precision of standard MOLLI sequences was well preserved with the proposed network architecture ( 24 ± 28 ms $24 \pm 28\;\;{\rm{ms}}$ vs. 18 ± 13 ms $18 \pm 13\;{\rm{ms}}$ ). Network-generated T1 reactivities are similar to stress and rest pre-contrast MOLLI studies ( 5.1 ± 4.0 % $5.1 \pm 4.0\;\% $ vs. 4.9 ± 4.4 % $4.9 \pm 4.4\;\% $ with p = 0.84 $p\; = \;0.84$ ). Amyloidosis T1 maps generated using the proposed network are also similar to the reference T1 maps (pre-contrast: 1243 ± 140 ms $1243 \pm 140\;\;{\rm{ms}}$ vs. 1231 ± 137 ms $1231 \pm 137\;{\rm{ms}}$ with p = 0.60 $p\; = \;0.60$ ; post-contrast: 348 ± 26 ms $348 \pm 26\;{\rm{ms}}$ vs. 346 ± 27 ms $346 \pm 27\;{\rm{ms}}$ with p = 0.89 $p\; = \;0.89$ ). CONCLUSIONS: A bidirectional multilayered LSTM network with fully connected output and cyclic model-based loss was used to generate high-quality pre- and post-contrast T1 maps using the first three T1-weighted images and their corresponding inversion times. This work demonstrates that combining deep learning with cardiac T1 mapping can potentially accelerate standard MOLLI sequences from 11 to 3 heartbeats.


Assuntos
Coração , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Miocárdio , Imagens de Fantasmas
20.
J Magn Reson Imaging ; 34(6): 1465-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21972108

RESUMO

PURPOSE: To develop and test a hybrid radial (stack of stars) acquisition and compressed sensing reconstruction for efficient late gadolinium enhancement (LGE) imaging of the left atrium. MATERIALS AND METHODS: Two hybrid radial acquisition schemes, kx-ky-first and kz-first, are tested using the signal equation for an inversion recovery sequence with simulated data. Undersampled data reconstructions are then performed using a compressed sensing approach with a three-dimensional total variation constraint. The data acquisition and reconstruction framework is tested on five atrial fibrillation patients after treatment by radio-frequency ablation. The hybrid radial data are acquired with free breathing without respiratory navigation. RESULTS: The kz-first radial acquisition gave improved image quality as compared to a kx-ky-first scheme. Compressed sensing reconstructions improved the overall quality of undersampled radial LGE images. An image quality metric that takes into account the signal, noise, artifact, and blur for the radial images was 35% (±17%) higher than the corresponding Cartesian acquisitions. Total acquisition time for 36 slices with 1.25 × 1.25 × 2.5 mm(3) resolution was under 3 min for the proposed scheme. CONCLUSION: Hybrid radial LGE imaging of the LA with compressed sensing is a promising approach for obtaining images efficiently and offers more robust image quality than Cartesian acquisitions that were acquired without a respiratory navigator signal.


Assuntos
Gadolínio , Átrios do Coração/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Fibrilação Atrial/cirurgia , Ablação por Cateter , Humanos , Aumento da Imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA