Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oral Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764359

RESUMO

OBJECTIVE: Hypertension disrupts the bone integrity and its repair ability. This study explores the efficiency of a therapy based on the application of mesenchymal stem cells (MSCs) to repair bone defects of spontaneously hypertensive rats (SHR). METHODS: First, we evaluated SHR in terms of bone morphometry and differentiation of MSCs into osteoblasts. Then, the effects of the interactions between MSCs from normotensive rats (NTR-MSCs) cocultured with SHR (SHR-MSCs) on the osteoblast differentiation of both cell populations were evaluated. Also, bone formation into calvarial defects of SHR treated with NTR-MSCs was analyzed. RESULTS: Hypertension induced bone loss evidenced by reduced bone morphometric parameters of femurs of SHR compared with NTR as well as decreased osteoblast differentiation of SHR-MSCs compared with NTR-MSCs. NTR-MSCs partially restored the capacity of SHR-MSCs to differentiate into osteoblasts, while SHR-MSCs exhibited a slight negative effect on NTR-MSCs. An enhanced bone repair was observed in defects treated with NTR-MSCs compared with control, stressing this cell therapy efficacy even in bones damaged by hypertension. CONCLUSION: The use of MSCs derived from a heathy environment can be in the near future a smart approach to treat bone loss in the context of regenerative dentistry for oral rehabilitation of hypertensive patients.

2.
Cell Tissue Res ; 386(2): 335-347, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34223979

RESUMO

The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.


Assuntos
Agrina/análise , Osteoblastos/citologia , Células 3T3 , Agrina/genética , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese
3.
J Cell Physiol ; 235(11): 8293-8303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32239701

RESUMO

This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and ß-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/ß-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/ß-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Receptores Frizzled/metabolismo , Osteoblastos/metabolismo , Titânio , Via de Sinalização Wnt/fisiologia , Animais , Linhagem Celular , Nanopartículas Metálicas , Camundongos , Osteogênese/fisiologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
4.
Life Sci ; 340: 122463, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286209

RESUMO

AIMS: Cell therapy utilizing mesenchymal stem cells (MSCs) from healthy donors (HE-MSCs) is a promising strategy for treating osteoporotic bone defects. This study investigated the effects of interaction between HE-MSCs and MSCs from osteoporotic donors (ORX-MSCs) on osteoblast differentiation of MSCs and of HE-MSCs on bone formation in calvarial defects of osteoporotic rats. MATERIALS AND METHODS: Osteoporosis was induced by orchiectomy (ORX) and its effects on the bone were evaluated by femur microtomography (µCT) and osteoblast differentiation of bone marrow MSCs. HE- and ORX-MSCs were cocultured, and osteoblast differentiation was evaluated using genotypic and phenotypic parameters. HE-MSCs were injected into the calvarial defects of osteoporotic rats, and bone formation was evaluated by µCT, histology, and gene expression of osteoblast markers. KEY FINDINGS: ORX-induced osteoporosis was revealed by reduced bone morphometric parameters and osteoblast differentiation in ORX-MSCs. HE-MSCs partially recovered the osteogenic potential of ORX-MSCs, whereas HE-MSCs were mildly affected by ORX-MSCs. Additionally, the bone morphogenetic protein and wingless-related integration site signaling pathway components were similarly modulated in cocultures involving ORX-MSCs. HE-MSCs induced meaningful bone formation, highlighting the effectiveness of cell therapy even in osteoporotic bones. SIGNIFICANCE: These results provide new perspectives on the development of cell-based therapies to regenerate bone defects in patients with disorders that affect bone tissue.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Animais , Osteogênese , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Osteoporose/metabolismo , Osteoblastos/metabolismo , Células Cultivadas
5.
J Funct Biomater ; 14(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36826878

RESUMO

BACKGROUND: The events of bone formation and osteoblast/titanium (Ti) interactions may be affected by Hedgehog and Notch signalling pathways. Herein, we investigated the effects of modulation of these signalling pathways on osteoblast differentiation caused by the nanostructured Ti (Ti-Nano) generated by H2SO4/H2O2. METHODS: Osteoblasts from newborn rat calvariae were cultured on Ti-Control and Ti-Nano in the presence of the Hedgehog agonist purmorphamine or antagonist cyclopamine and of the Notch antagonist N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or agonist bexarotene. Osteoblast differentiation was evaluated by alkaline phosphatase activity and mineralization, and the expression of Hedgehog and Notch receptors was also evaluated. RESULTS: In general, purmorphamine and DAPT increased while cyclopamine and bexarotene decreased osteoblast differentiation and regulated the receptor expression on both Ti surfaces, with more prominent effects on Ti-Nano. The purmorphamine and DAPT combination exhibited synergistic effects on osteoblast differentiation that was more intense on Ti-Nano. CONCLUSION: Our results indicated that the Hedgehog and Notch signalling pathways drive osteoblast/Ti interactions more intensely on nanotopography. We also demonstrated that combining Hedgehog activation with Notch inhibition exhibits synergistic effects on osteoblast differentiation, especially on Ti-Nano. The uncovering of these cellular mechanisms contributes to create strategies to control the process of osseointegration based on the development of nanostructured surfaces.

6.
Biology (Basel) ; 12(8)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37627031

RESUMO

Bone formation is driven by many signaling molecules including bone morphogenetic protein 9 (BMP-9) and hypoxia-inducible factor 1-alpha (HIF-1α). We demonstrated that cell therapy using mesenchymal stem cells (MSCs) overexpressing BMP-9 (MSCs+BMP-9) enhances bone formation in calvarial defects. Here, the effect of hypoxia on BMP components and targets of MSCs+BMP-9 and of these hypoxia-primed cells on osteoblast differentiation and bone repair was evaluated. Hypoxia was induced with cobalt chloride (CoCl2) in MSCs+BMP-9, and the expression of BMP components and targets was evaluated. The paracrine effects of hypoxia-primed MSCs+BMP-9 on cell viability and migration and osteoblast differentiation were evaluated using conditioned medium. The bone formation induced by hypoxia-primed MSCs+BMP-9 directly injected into rat calvarial defects was also evaluated. The results demonstrated that hypoxia regulated BMP components and targets without affecting BMP-9 amount and that the conditioned medium generated under hypoxia favored cell migration and osteoblast differentiation. Hypoxia-primed MSCs+BMP-9 did not increase bone repair compared with control MSCs+BMP-9. Thus, despite the lack of effect of hypoxia on bone formation, the enhancement of cell migration and osteoblast differentiation opens windows for further investigations on approaches to modulate the BMP-9-HIF-1α circuit in the context of cell-based therapies to induce bone regeneration.

7.
Regen Med ; 18(5): 377-387, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37125511

RESUMO

Aim: We evaluated the bone repair induced by MSCs from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs) injected into rat calvarial defects at two time points. Methods & results: Both cell populations expressed MSC surface markers and differentiated into adipocytes and osteoblasts. µCT showed that the combination of cells from distinct sources exhibited synergistic effects to increase bone repair with an advantage when BM-MSCs were injected prior to AT-MSCs. The higher osteogenic potential of these MSC combinations was demonstrated using an in vitro coculture system where BM-MSCs and AT-MSCs association induced higher ALP activity in MC3T3-E1 cells. Conclusion: Our findings may drive new approaches to treat bone defects and shed light on the complexity of the mechanisms involved in bone regeneration.


We evaluated the bone repair induced by cells that can develop into different types of cells (stem cells) derived from fat and spongy tissue inside the large bones and injected into defects created in rat skulls. Cells derived from both tissues developed into fat cells and bone-forming cells. The combination of cells from fat and spongy tissue exhibited cooperative effects to increase bone repair with an advantage when cells from spongy tissue were injected prior to cells from fat. Our findings may contribute to stablish new therapies based on the use of cells to treat large bone defects.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Ratos , Animais , Tecido Adiposo , Osteogênese , Regeneração Óssea , Diferenciação Celular , Células da Medula Óssea , Células Cultivadas
8.
J Funct Biomater ; 14(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367270

RESUMO

BACKGROUND: Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold and photobiomodulation (PBM) on bone repair. METHODS AND RESULTS: P(VDF-TrFE)/BaTiO3 was synthesized using an electrospinning technique and presented physical and chemical properties suitable for bone tissue engineering. This scaffold was implanted in rat calvarial defects (unilateral, 5 mm in diameter) and, 2 weeks post-implantation, MSCs were locally injected into these defects (n = 12/group). Photobiomodulation was then applied immediately, and again 48 and 96 h post-injection. The µCT and histological analyses showed an increment in bone formation, which exhibited a positive correlation with the treatments combined with the scaffold, with MSCs and PBM inducing more bone repair, followed by the scaffold combined with PBM, the scaffold combined with MSCs, and finally the scaffold alone (ANOVA, p ≤ 0.05). CONCLUSIONS: The P(VDF-TrFE)/BaTiO3 scaffold acted synergistically with MSCs and PBM to induce bone repair in rat calvarial defects. These findings emphasize the need to combine a range of techniques to regenerate large bone defects and provide avenues for further investigations on innovative tissue engineering approaches.

9.
Regen Med ; 17(6): 341-353, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35291805

RESUMO

Aim: This study aimed to evaluate the ability of human periodontal ligament stem cells (PDLSCs) with high (HP-PDLSCs) and low (LP-PDLSCs) osteogenic potential, in addition to mixed cells, to repair bone tissue. Methods: Cell phenotype, proliferation and differentiation were evaluated. Undifferentiated PDLSCs were injected into rat calvarial defects and the new bone was evaluated by µCT, histology and real-time PCR. Results: PDLSCs exhibited a typical mesenchymal stem cell phenotype and HP-PDLSCs showed lower proliferative and higher osteogenic potential than LP-PDLSCs. PDLSCs induced similar bone formation and histological analysis suggests a remodeling process, confirmed by osteogenic and osteoclastogenic markers, especially in tissues derived from defects treated with HP-PDLSCs. Conclusion: PDLSCs induced similar bone formation irrespective of their in vitro osteogenic potential.


Bone is one of the most transplanted tissues worldwide and cell-based therapies has been investigated as an alternative for the treatment of bone defects. Dental tissues have been investigated as sources of stem cells and the periodontal ligament has been shown to be a viable source of these cells. Stem cells from periodontal ligament induce significant bone formation in rat calvaria defects and are safe for cell-based therapies, as the cells remain at the bone defect site for up to 4 weeks and do not migrate to vital organs, such as brain, heart, lungs, spleen, kidneys, and liver in the same period. In addition, immune responses were not detected. Considering that, stem cells from periodontal ligament can be useful in cell therapy strategies to induce bone regeneration.


Assuntos
Osteogênese , Ligamento Periodontal , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Ratos , Crânio , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA