RESUMO
Background: In the wake of economic challenges, the role of generic medicines has become crucial in meeting the healthcare needs of people. Their use, however, can only be guaranteed if established to be bioequivalent to their corresponding innovator products. Aim: In this study, we assess the suitability of a generic brand of cetirizine hydrochloride tablet to be used in place of the innovator brand on the Ghanaian market through bioequivalence assessment. Method: An HPLC bioanalytical method was developed and validated for the detection and quantitation of cetirizine in a urine matrix. This was then used to quantify the amount of cetirizine excreted unchanged in urine samples of 12 healthy male volunteers collected over a 24-h period using a two-way crossover design approach. Results: Chromatographic separation was successfully achieved with an isocratic elution on a reverse-phase column. The mean retention time for cetirizine was 2.890 ± 0.243 min. The mean cumulative amounts of cetirizine in the reference and test drugs excreted were 5.69 ± 0.98 mg and 5.82 ± 1.96 mg respectively. Other pharmacokinetic parameters including mean relative Areas Under Curve (AUC0-24) of 13.32 and 13.05 µg/mL, and peak Concentration (Cmax) of 3.378 and 3.043 µg/mL at the times at which Cmax was observed (Tmax) being 7.25 and 7.42 min were established respectively for the reference and test drugs. The relative bioavailability was determined to be 102.28, making the locally manufactured brand bioequivalent to the innovator brand. Conclusion: The locally manufactured test Cetirizine drug was found to be bioequivalent with the innovator brand and could serve as a suitable alternative to the latter. Additionally, relevant pharmacokinetic parameters for cetirizine has been established using urinary excretion data.
RESUMO
There has been an increasing interest in the search for colour indicators of natural origin for titrimetric analysis. This is due to some challenges associated with the currently used synthetic ones. This study evaluates and validates the acid-base indicator property of plumbagin isolated from Plumbago zeylanica Linn. Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was isolated from the roots of Plumbago zeylanica Linn using silica gel chromatography and characterized using spectroscopic methods in comparison with those reported in the literature. Its acid-base indicator property was evaluated alongside phenolphthalein and methyl orange, after it was found to exhibit a sharp change in colour at various pH ranges. The plumbagin indicator was successfully used to assay ibuprofen powder and tablets (400 mg) using the British Pharmacopoeia (2013) method. Data obtained were analyzed statistically by Student's t-test and one-way ANOVA in GraphPad Prism (version 5.01, 2010). Analysis of the use of the plumbagin indicator in acid-base titrations between strong acids and strong bases and between weak acids and strong bases has been evaluated and validated according to the ICH guidelines. Plumbagin use in ibuprofen powder and tablets has also been verified. Plumbagin has been validated for use as an indicator suitable for different acid-base titrations and the analysis of ibuprofen.
RESUMO
Antimicrobial resistance (AMR) is a threat to the prevention and treatment of the increasing range of infectious diseases. There is therefore the need for renewed efforts into antimicrobial discovery and development to combat the menace. The antimicrobial activity of plumbagin isolated from roots of Plumbago zeylanica against selected organisms was evaluated for resistance modulation antimicrobial assay, time-kill kinetics assay, and inhibition of biofilm formation. The minimum inhibitory concentrations (MICs) of plumbagin and standard drugs were determined via the broth microdilution method to be 0.5 to 8 µg/mL and 0.25-128 µg/mL, respectively. In the resistance modulation study, MICs of the standard drugs were redetermined in the presence of subinhibitory concentration of plumbagin (4 µg/mL), and plumbagin was found to either potentiate or reduce the activities of these standard drugs with the highest potentiation recorded up to 12-folds for ketoconazole against Candida albicans. Plumbagin was found to be bacteriostatic and fungistatic from the time-kill kinetics study. Plumbagin demonstrated strong inhibition of biofilm formation activity at concentrations of 128, 64, and 32 µg/mL against the test microorganisms compared with ciprofloxacin. Plumbagin has been proved through this study to be a suitable lead compound in antimicrobial resistance drug development.
RESUMO
BACKGROUND: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including headache and neuralgia. An animal model of vincristine-induced sensory neuropathy was developed after repeated intraperitoneal injection in rats and used in the present work to study the effects of the ethanolic extract of X. aethiopica (XAE) and its diterpene xylopic acid (XA) in vincristine-induced neuropathic pain. MATERIALS AND METHODS: Vincristine (0.1 mg kg(-1) day(-1)) was administered during two cycles of five consecutive days to induce chemotherapy-induced neuropathic pain. Static tactile anti-allodynic, anti-hyperalgesic, and cold anti-allodynic effects of XAE (30-300 mg kg(-1)) and XA (10-100 mg kg(-1)) were assessed using Von Frey filaments of bending forces of 4, 8, and 15 g, the Randall-Selitto paw pressure test, and cold water (4.5°C), respectively. RESULTS: Administration of vincristine caused the development of allodynia and hyperalgesia with no significant motor deficit, spontaneous pain, and foot deformity. XAE (30-300 mg kg(-1)) and XA (10-100 mg kg(-1)) exhibited anti-hyperalgesic, tactile, and cold anti-allodynic properties with XA exhibiting greater potency than XAE. Pregabalin (10-100 mg kg(-1)) used as control produced similar effect. CONCLUSION: These findings establish the anti-allodynic and anti-hyperalgesic effects of the ethanolic fruit XAE and its major diterpene XA in vincristine-induced neuropathtic pain.
RESUMO
5-Hydroxytryptophan (1) is a naturally occurring amino acid found in significant levels in seeds of Griffonia simplicifolia and used in the treatment of the numerous effects of serotonin deficiency syndrome. An HPLC method has been developed for the direct assay of 1 in seeds of G. simplicifolia which overcomes the problems associated with previous techniques. By optimising the solvent extraction procedures and the HPLC conditions, levels of 1 could be estimated following a single-step seed extraction. The chromatographic conditions, solvent system and the extraction technique developed make this method relatively simple, fast and efficient. Using the described methods, the highest ever levels of 1 (namely, 20.83% on a fresh weight basis) have been determined in seeds of G. simplicifolia obtained in Ghana.