Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706347

RESUMO

OBJECTIVE: Exposure of neonatal macaques to the antiseizure medications phenobarbital and midazolam (PbM) causes widespread apoptotic death of neurons and oligodendrocytes. We studied behavior and neurocognitive performance in 12 to 24 month-old macaques treated as neonates with PbM. METHODS: A total of 14 monkeys received phenobarbital and midazolam over 24 hours under normothermia (n = 8) or mild hypothermia (n = 6). Controls (n = 8) received no treatment. Animals underwent testing in the human intruder paradigm at ages 12 and 18 months, and a 3-step stimulus discrimination task at ages 12, 18, and 24 months. RESULTS: Animals treated with PbM displayed lower scores for environmental exploration, and higher scores for locomotion and vocalizations compared with controls. Combined PbM and hypothermia resulted in lower scores for aggression and vigilance at 12 months compared with controls and normothermic PbM animals. A mixed-effects generalized linear model was used to test for differences in neurocognitive performance between the control and PbM groups in the first step of the stimulus discrimination task battery (shape center baited to shape center non-baited). The odds of passing this step differed by group (p = 0.044). At any given age, the odds of passing for a control animal were 9.53-fold (95% CI 1.06-85) the odds for a PbM animal. There was also evidence suggesting a higher learning rate in the shape center non-baited for the control relative to the PbM group (Cox model HR 2.13, 95% CI 1.02-4.43; p = 0.044). INTERPRETATION: These findings demonstrate that a 24-hour-long neonatal treatment with a clinically relevant combination of antiseizure medications can have long-lasting effects on behavior and cognition in nonhuman primates. ANN NEUROL 2023.

2.
J Gerontol A Biol Sci Med Sci ; 75(7): 1293-1298, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32052009

RESUMO

Aging is a multifactorial process characterized by progressive changes in gut physiology and the intestinal mucosal immune system. These changes, along with alterations in lifestyle, diet, nutrition, inflammation and immune function alter both composition and stability of the gut microbiota. Given the impact of environmental influences on the gut microbiota, animal models are particularly useful in this field. To understand the relationship between the gut microbiota and aging in nonhuman primates, we collected fecal samples from 20 male and 20 female rhesus macaques (Macaca mulatta), across the natural macaque age range, for 16S rRNA gene analyses. Operational taxonomic units were then grouped together to summarize taxon abundance at different hierarchical levels of classification and alpha- and beta-diversity were calculated. There were no age or sex differences in alpha diversity. At the phylum level, relative abundance of Proteobacteria and Firmicutes and Firmicutes to Bacteriodetes ratio were different between age groups though significance disappeared after correction for multiple comparisons. At the class level, relative abundance of Firmicutes_Bacilli decreased and Proteobacteria_Alphaproteobacteria and Proteobacteria_Betaproteobacteria increased with each successively older group. Only differences in Firmicutes_Bacilli remained significant after correction for multiple comparisons. No sex differences were identified in relative abundances after correction for multiple comparisons. Our results are not surprising given the known impact of environmental factors on the gut microbiota.


Assuntos
Envelhecimento/fisiologia , Microbioma Gastrointestinal/fisiologia , Fatores Etários , Animais , Fezes/microbiologia , Feminino , Macaca mulatta , Masculino , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA