RESUMO
Lipopolysaccharide (LPS) is considered as a powerful inducer of muscle atrophy in higher vertebrates due to skeletal muscle cell recognition of the endotoxin and a consequent activation of catabolic signaling pathways. In contrast, there is no evidence of LPS directly inducing skeletal muscle atrophy in lower vertebrates, such as fish. For years it has been assumed that fish are resistant to LPS, mainly due to differences in the key features of toll-like receptor (TLR) signaling pathways when compared with mammals. In this study, we report that the stimulation of cultured rainbow trout (Oncorhynchus mykiss) myotubes with LPS (100 ng/ml) resulted in a transient decrease in the pAkt/Akt ratio, a subsequent reduction in the pFoxO1/FoxO1 ratio, and a significant increase in atrogin-1 transcript expression. Preincubation with polymyxin B, an LPS-neutralizing agent, and 740 Y-P, an agonist of p85-PI3K, blocked the effects of LPS. Additionally, LPS treatment induced an increase in protein ubiquitination and a reduction in myotube diameter, both of which are associated with muscular atrophy that is not observed under polymyxin B and 740 Y-P pretreatments. Finally, rainbow trout myotubes expressed the genes tlr1, tlr3, tlr5m, tlr8a1, tlr8a2, tlr9, and tlr22, with significantly increased expressions of tlr5m and tlr9 under LPS stimulation. These results indicate that LPS is an inducer of fish skeletal muscle atrophy and suggest that TLR5M and TLR9 may play important roles in detecting LPS, which supports for the first time the hypothesis that LPS is a direct inducer of skeletal muscle atrophy in teleost species.
Assuntos
Lipopolissacarídeos/toxicidade , Fibras Musculares Esqueléticas/patologia , Oncorhynchus mykiss/fisiologia , Transdução de Sinais , Animais , Atrofia/induzido quimicamente , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Receptores Toll-Like/metabolismoRESUMO
The red cusk-eel (Genypterus chilensis) is an endemic fish species distributed along the coasts of the Eastern South Pacific. Biological studies on this fish are scarce, and genomic information for G. chilensis is practically non-existent. Thus, transcriptome information for this species is an essential resource that will greatly enrich molecular information and benefit future studies of red cusk-eel biology. In this work, we obtained transcriptome information of G. chilensis using the Illumina platform. The RNA sequencing generated 66,307,362 and 59,925,554 paired-end reads from skeletal muscle and liver tissues, respectively. De novo assembly using the CLC Genomic Workbench version 7.0.3 produced 48,480 contigs and created a reference transcriptome with a N50 of 846bp and average read coverage of 28.3×. By sequence similarity search for known proteins, a total of 21,272 (43.9%) contigs were annotated for their function. Out of these annotated contigs, 33.5% GO annotation results for biological processes, 32.6% GO annotation results for cellular components and 34.5% GO annotation results for molecular functions. This dataset represents the first transcriptomic resource for the red cusk-eel and for a member of the Ophidiimorpharia taxon.