Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0227502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31999705

RESUMO

Effective management of marine systems requires quantitative tools that can assess the state of the marine social-ecological system and are responsive to management actions and pressures. We applied the Ocean Health Index (OHI) framework to retrospectively assess ocean health in British Columbia annually from 2001 to 2016 for eight goals that represent the values of British Columbia's coastal communities. We found overall ocean health improved over the study period, from 75 (out of 100) in 2001 to 83 in 2016, with scores for inhabited regions ranging from 68 (North Coast, 2002) to 87 (West Vancouver Island, 2011). Highest-scoring goals were Tourism & Recreation (average 94 over the period) and Habitat Services (100); lowest-scoring goals were Sense of Place (61) and Food Provision (64). Significant increases in scores over the time period occurred for Food Provision (+1.7 per year), Sense of Place (+1.4 per year), and Coastal Livelihoods (+0.6 per year), while Habitat Services (-0.01 per year) and Biodiversity (-0.09 per year) showed modest but statistically significant declines. From the results of our time-series analysis, we used the OHI framework to evaluate impacts of a range of management actions. Despite challenges in data availability, we found evidence for the ability of management to reduce pressures on several goals, suggesting the potential of OHI as a tool for assessing the effectiveness of marine resource management to improve ocean health. Our OHI assessment provides an important comprehensive evaluation of ocean health in British Columbia, and our open and transparent process highlights opportunities for improving accessibility of social and ecological data to inform future assessment and management of ocean health.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Oceanos e Mares , Colúmbia Britânica , Conservação dos Recursos Naturais
2.
Curr Biol ; 29(18): 3087-3093.e3, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31474532

RESUMO

Carbon offsetting-receiving credit for reducing, avoiding, or sequestering carbon-has become part of the portfolio of solutions to mitigate carbon emissions, and thus climate change, through policy and voluntary markets, primarily by land-based re- or afforestation and preservation [1, 2]. However, land is limiting, creating interest in a rapidly growing aquatic farming sector of seaweed aquaculture [3-5]. Synthesizing data from scientific literature, we assess the extent and cost of scaling seaweed aquaculture to provide sufficient CO2eq sequestration for several climate change mitigation scenarios, with a focus on the food sector-a major source of greenhouse gases [6]. Given known ecological constraints (nutrients and temperature), we found a substantial suitable area (ca. 48 million km2) for seaweed farming, which is largely unfarmed. Within its own industry, seaweed could create a carbon-neutral aquaculture sector with just 14% (mean = 25%) of current seaweed production (0.001% of suitable area). At a much larger scale, we find seaweed culturing extremely unlikely to offset global agriculture, in part due to production growth and cost constraints. Yet offsetting agriculture appears more feasible at a regional level, especially areas with strong climate policy, such as California (0.065% of suitable area). Importantly, seaweed farming can provide other benefits to coastlines affected by eutrophic, hypoxic, and/or acidic conditions [7, 8], creating opportunities for seaweed farming to act as "charismatic carbon" that serves multiple purposes. Seaweed offsetting is not the sole solution to climate change, but it provides an invaluable new tool for a more sustainable future.


Assuntos
Aquicultura/métodos , Sequestro de Carbono/fisiologia , Alga Marinha/metabolismo , Agricultura , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Alga Marinha/crescimento & desenvolvimento
3.
Sci Rep ; 9(1): 11609, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406130

RESUMO

Humans interact with the oceans in diverse and profound ways. The scope, magnitude, footprint and ultimate cumulative impacts of human activities can threaten ocean ecosystems and have changed over time, resulting in new challenges and threats to marine ecosystems. A fundamental gap in understanding how humanity is affecting the oceans is our limited knowledge about the pace of change in cumulative impact on ocean ecosystems from expanding human activities - and the patterns, locations and drivers of most significant change. To help address this, we combined high resolution, annual data on the intensity of 14 human stressors and their impact on 21 marine ecosystems over 11 years (2003-2013) to assess pace of change in cumulative impacts on global oceans, where and how much that pace differs across the ocean, and which stressors and their impacts contribute most to those changes. We found that most of the ocean (59%) is experiencing significantly increasing cumulative impact, in particular due to climate change but also from fishing, land-based pollution and shipping. Nearly all countries saw increases in cumulative impacts in their coastal waters, as did all ecosystems, with coral reefs, seagrasses and mangroves at most risk. Mitigation of stressors most contributing to increases in overall cumulative impacts is urgently needed to sustain healthy oceans.


Assuntos
Atividades Humanas , Oceanos e Mares , Poluição da Água , Conservação dos Recursos Naturais/métodos , Humanos
4.
PLoS One ; 12(5): e0175739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467508

RESUMO

Species distribution data provide the foundation for a wide range of ecological research studies and conservation management decisions. Two major efforts to provide marine species distributions at a global scale are the International Union for Conservation of Nature (IUCN), which provides expert-generated range maps that outline the complete extent of a species' distribution; and AquaMaps, which provides model-generated species distribution maps that predict areas occupied by the species. Together these databases represent 24,586 species (93.1% within AquaMaps, 16.4% within IUCN), with only 2,330 shared species. Differences in intent and methodology can result in very different predictions of species distributions, which bear important implications for scientists and decision makers who rely upon these datasets when conducting research or informing conservation policy and management actions. Comparing distributions for the small subset of species with maps in both datasets, we found that AquaMaps and IUCN range maps show strong agreement for many well-studied species, but our analysis highlights several key examples in which introduced errors drive differences in predicted species ranges. In particular, we find that IUCN maps greatly overpredict coral presence into unsuitably deep waters, and we show that some AquaMaps computer-generated default maps (only 5.7% of which have been reviewed by experts) can produce odd discontinuities at the extremes of a species' predicted range. We illustrate the scientific and management implications of these tradeoffs by repeating a global analysis of gaps in coverage of marine protected areas, and find significantly different results depending on how the two datasets are used. By highlighting tradeoffs between the two datasets, we hope to encourage increased collaboration between taxa experts and large scale species distribution modeling efforts to further improve these foundational datasets, helping to better inform science and policy recommendations around understanding, managing, and protecting marine biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Biologia Marinha , Animais , Modelos Teóricos , Ursidae
5.
PLoS One ; 12(7): e0178267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678881

RESUMO

Growing international and national focus on quantitatively measuring and improving ocean health has increased the need for comprehensive, scientific, and repeated indicators to track progress towards achieving policy and societal goals. The Ocean Health Index (OHI) is one of the few indicators available for this purpose. Here we present results from five years of annual global assessment for 220 countries and territories, evaluating potential drivers and consequences of changes and presenting lessons learned about the challenges of using composite indicators to measure sustainability goals. Globally scores have shown little change, as would be expected. However, individual countries have seen notable increases or declines due in particular to improvements in the harvest and management of wild-caught fisheries, the creation of marine protected areas (MPAs), and decreases in natural product harvest. Rapid loss of sea ice and the consequent reduction of coastal protection from that sea ice was also responsible for declines in overall ocean health in many Arctic and sub-Arctic countries. The OHI performed reasonably well at predicting near-term future scores for many of the ten goals measured, but data gaps and limitations hindered these predictions for many other goals. Ultimately, all indicators face the substantial challenge of informing policy for progress toward broad goals and objectives with insufficient monitoring and assessment data. If countries and the global community hope to achieve and maintain healthy oceans, we will need to dedicate significant resources to measuring what we are trying to manage.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Fenômenos Ecológicos e Ambientais , Ecossistema , Pesqueiros/estatística & dados numéricos , Algoritmos , Mudança Climática , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Pesqueiros/tendências , Geografia , Humanos , Concentração de Íons de Hidrogênio , Internacionalidade , Biologia Marinha/métodos , Biologia Marinha/estatística & dados numéricos , Biologia Marinha/tendências , Modelos Teóricos , Oceanos e Mares , Água do Mar/química
6.
Nat Ecol Evol ; 1(6): 160, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28812630

RESUMO

Reproducibility has long been a tenet of science but has been challenging to achieve-we learned this the hard way when our old approaches proved inadequate to efficiently reproduce our own work. Here we describe how several free software tools have fundamentally upgraded our approach to collaborative research, making our entire workflow more transparent and streamlined. By describing specific tools and how we incrementally began using them for the Ocean Health Index project, we hope to encourage others in the scientific community to do the same-so we can all produce better science in less time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA