Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 110: 104777, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714023

RESUMO

Despite the limitations of current methods in cancer treatment, the use of bioactive peptides can be as an alternative to treat today. Therefore, isolation and relative purification of bioactive peptides was carried out form Achillea eriophora using a Sep-Pak C18 SPE cartridge and Amicon® Ultra Centrifugal Filters. The presence of desired peptides was checked using RP-HPLC and confirmed using LC-MS. The results of anticancer assay showed that the peptide mixture inhibits the growth of MCF-7 cancerous cell line with the values of IC50, GI50, and LC50 equal to 18.73 ± 0.22, 7.52 ± 0.15, and 56.73 ± 0.18 µg/mL, respectively. It also showed DPPH radical scavenging activity and cupric-ion reducing power with the IC50 value of 5.095 ± 0.23 and 63.3 ± 0.44 µg/mL, respectively. Although flavonoids were present in the sample along with the peptides, their amount was trivial (18.097 ± 1.36 µg/mL). Nevertheless, the results of the LC-MS showed mass-to-charge ratios of 301.17, 261.22, and 243.25, which was a dipeptide or tripeptide in compression to enzyme-digested BSA as a standard. In addition, SEM analysis of the purified peptide mixture showed that it kills the MCF-7 cancerous cell line by creating pores in the membrane. Therefore, it might be valuable to these peptides sequenced and be studied for physicochemical properties. Animal and clinical studies could help its application in drug development.


Assuntos
Achillea/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Flores/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
2.
J Food Sci ; 85(10): 3160-3167, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32885425

RESUMO

Functional evaluation of encrypted bioactive peptides in protein structure helps to better understand those for using in pharmacy and food sciences. For this purpose, the total protein was extracted from Matricaria chamomilla, Ziziphora clinopodioides, and Cressa cretica, and partially purified with ammonium sulfate. Protein hydrolysates were obtained from pancreatin hydrolysis for 240 min and the enzyme hydrolysis was confirmed using the determination of hydrolysis degree and Fourier transform infrared (FT-IR) followed by the physicochemical and sensory properties were investigated. The results showed that all hydrolysates had both cytotoxic and antioxidant activities. Specifically, C. cretica hydrolysates represented cytotoxic activity against the MCF-7 cell line with the IC50 of 135.21 µg/mL, while showed no significant growth inhibition effect on the HEK293 cell line. Besides, M. chamomilla hydrolysates showed the lowest bitterness value (1.125 ± 0.52). From the perspective of color investigation, M. chamomilla hydrolysates indicated the highest L* and the lowest a* factors. The highest turbidity and surface tension, and 10-fold more cancer cell killing effect under gastrointestinal digestion conditions were observed for M. chamomilla hydrolysates. Therefore, bioactive peptides might be formulated in designing of novel anticancer drugs or could be used in promising protocols for the production of food products with beneficial health effects.


Assuntos
Brassicaceae/química , Lamiaceae/química , Matricaria/química , Proteínas de Plantas/química , Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Hidrólise , Pancreatina/química , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Plantas Medicinais/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
3.
PLoS One ; 8(1): e52757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341906

RESUMO

Low temperature injury is one of the most significant causes of crop damage worldwide. Cold acclimatization processes improve the freezing tolerance of plants. To identify genes of potential importance for acclimatzation to the cold and to elucidate the pathways that regulate this process, global transcriptome expression of the chickpea (Cicer arietinum L), a species of legume, was analyzed using the cDNA-AFLP technique. In total, we generated 4800 transcript-derived fragments (TDFs) using cDNA-AFLP in conjunction with 256 primer combinations. We only considered those cDNA fragments that seemed to be up-regulated during cold acclimatization. Of these, 102 TDFs with differential expression patterns were excised from gels and re-amplified by PCR. Fifty-four fragments were then cloned and sequenced. BLAST search of the GenBank non-redundant (nr) sequence database demonstrated that 77 percent of the TDFs belonged to known sequences with putative functions related to metabolism (31), transport (10), signal transduction pathways (15) and transcription factors (21). The last group of expressed transcripts showed homology to genes of unknown function (22). To further analyze and validate our cDNA-AFLP experiments, the expression of 9 TDFs during cold acclimatzatiion was confirmed using real time RT-PCR. The results of this research show that cDNA-AFLP is a powerful technique for investigating the expression pattern of chickpea genes under low-temperature stress. Moreover, our findings will help both to elucidate the molecular basis of low-temperature effects on the chickpea genome and to identify those genes that could increase the cold tolerance of the chickpea plant.


Assuntos
Adaptação Fisiológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Cicer/genética , Temperatura Baixa , DNA Complementar/genética , Genes de Plantas/genética , Regulação para Cima/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA