Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1860(2): 264-271, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28939382

RESUMO

The effect of the antimicrobial compound triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol) on the permeability of lecithin liposomes and rat liver mitochondria was studied. It was found that triclosan was able to increase nonspecific permeability of liposomes in a dose-dependent manner, which was detected by the release of the fluorescent probe sulforhodamine B (SRB) from vesicles. A partial release of SRB occurs instantly at the moment of triclosan addition, which is followed by a slow leakage of the dye. The triclosan-induced release of SRB from liposomes grew as pH of the medium was decreased from 9.5 to 7.5. As revealed by the laurdan generalized polarization (GP) technique, triclosan increased laurdan GP in lecithin liposomes, indicating a decrease in membrane fluidity. Measurements of GP as a function of fluorescence excitation wavelength gave an ascending line for triclosan-containing liposomes, which can be interpreted as phase heterogeneity of the lipid/triclosan system. Dynamic light scattering experiments also showed that at a high triclosan-to-lipid molar ratio (~0.5), a population of smaller light-scattering particles (~0.4 of the size of liposomes) appear in the system. Experiments with rat liver mitochondria demonstrated that triclosan (10-70µM) induced a high-amplitude cyclosporin А-insensitive swelling of the organelles accompanied the release of cytochrome c. On the basis of the results obtained, possible mechanisms of the toxic effect of triclosan in eukaryotic cells are discussed.


Assuntos
Lecitinas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Triclosan/farmacologia , Lipossomas Unilamelares/metabolismo , Animais , Anti-Infecciosos Locais/farmacologia , Citocromos c/metabolismo , Concentração de Íons de Hidrogênio , Lecitinas/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Dilatação Mitocondrial/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos Wistar , Rodaminas/metabolismo , Espectrometria de Fluorescência , Lipossomas Unilamelares/química
2.
Biochim Biophys Acta ; 1848(2): 488-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450352

RESUMO

The palmitate/Ca2+-induced (Pal/Ca2+) pore, which is formed due to the unique feature of long-chain saturated fatty acids to bind Ca2+ with high affinity, has been shown to play an important role in the physiology of mitochondria. The present study demonstrates that the efflux of Ca2+ from rat liver mitochondria induced by ruthenium red, an inhibitor of the energy-dependent Ca2+ influx, seems to be partly due to the opening of Pal/Ca2+ pores. Exogenous Pal stimulates the efflux. Measurements of pH showed that the Ca2+-induced alkalization of the mitochondrial matrix increased in the presence of Pal. The influx of Ca2+ (Sr2+) also induced an outflow of K+ followed by the reuptake of the ion by mitochondria. The outflow was not affected by a K+/H+ exchange blocker, and the reuptake was prevented by an ATP-dependent K+ channel inhibitor. It was also shown that the addition of Sr2+ to mitochondria under hypotonic conditions was accompanied by reversible cyclic changes in the membrane potential, the concentrations of Sr2+ and K+ and the respiratory rate. The cyclic changes were effectively suppressed by the inhibitors of Ca2+-dependent phospholipase A2, and a new Sr2+ cycle could only be initiated after the previous cycle was finished, indicating a refractory period in the mitochondrial sensitivity to Sr2+. All of the Ca2+- and Sr2+-induced effects were observed in the presence of cyclosporin A. This paper discusses a possible role of Pal/Ca2+ pores in the maintenance of cell ion homeostasis.


Assuntos
Cálcio/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Ácido Palmítico/metabolismo , Estrôncio/metabolismo , Animais , Cátions Bivalentes , Ciclosporina/farmacologia , Concentração de Íons de Hidrogênio , Transporte de Íons , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Antiportadores de Potássio-Hidrogênio/metabolismo , Ratos , Rutênio Vermelho/farmacologia
3.
Biochim Biophys Acta ; 1848(10 Pt A): 2200-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26014488

RESUMO

The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 µM) and the anionic surfactant sodium dodecylsulfate (10-50 µM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening.


Assuntos
Cálcio/farmacologia , Permeabilidade da Membrana Celular/fisiologia , Lipossomos/química , Membranas Mitocondriais/fisiologia , Palmitatos/farmacologia , Animais , Cálcio/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Íons , Membranas Mitocondriais/efeitos dos fármacos , Palmitatos/química , Porosidade/efeitos dos fármacos , Ratos , Ratos Wistar , Eletricidade Estática , Propriedades de Superfície/efeitos dos fármacos
4.
Biochim Biophys Acta ; 1838(10): 2600-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997274

RESUMO

In the present work, we examine and compare the effects of saturated (palmitic) and unsaturated (oleic) fatty acids in relation to their ability to cause the Ca(2+)-dependent membrane permeabilization. The results obtained can be summarized as follows. (1) Oleic acid (OA) permeabilizes liposomal membranes at much higher concentrations of Ca(2+) than palmitic acid (PA): 1mM versus 100µM respectively. (2) The OA/Ca(2+)-induced permeabilization of liposomes is not accompanied by changes in the phase state of lipid bilayer, in contrast to what is observed with PA and Ca(2+). (3) The addition of Ca(2+) to the PA-containing vesicles does not change their size; in the case of OA, it leads to the appearance of larger and smaller vesicles, with larger vesicles dominating. This can be interpreted as a result of fusion and fission of liposomes. (4) Like PA, OA is able to induce a Ca(2+)-dependent high-amplitude swelling of mitochondria, yet it requires higher concentrations of Ca(2+) (30 and 100µM for PA and OA respectively). (5) In contrast to PA, OA is unable to cause the Ca(2+)-dependent high-amplitude swelling of mitoplasts, suggesting that the cause of OA/Ca(2+)-induced permeability transition in mitochondria may be the fusion of the inner and outer mitochondrial membranes. (6) The presence of OA enhances PA/Ca(2+)-induced permeabilization of liposomes and mitochondria. The paper discusses possible mechanisms of PA/Ca(2+)- and OA/Ca(2+)-induced membrane permeabilization, the probability of these mechanisms to be realized in the cell, and their possible physiological role.


Assuntos
Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , Animais , Cálcio/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Mitocôndrias Hepáticas/química , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Poro de Transição de Permeabilidade Mitocondrial , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Permeabilidade , Ratos , Ratos Wistar
5.
J Membr Biol ; 247(3): 281-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24477786

RESUMO

Phospholipase A of the bacterial outer membrane (OMPLA) is a ß-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A2--palmitoyl trifluoromethyl ketone (PACOCF3) and aristolochic acid (AA)--with OMPLA and considers a possible involvement of the enzyme in the Ca²âº-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF3 and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF3, AA, and bromophenacyl bromide inhibit the Ca²âº-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca²âº and heat shock. The cell viability was not affected by the eucaryotic phospholipases A2 inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Fosfolipases A2/química , Fosfolipases A/química , Ácidos Aristolóquicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Escherichia coli/efeitos dos fármacos , Cetonas/farmacologia , Modelos Moleculares , Conformação Molecular , Fosfolipases A/antagonistas & inibidores , Fosfolipases A/metabolismo , Fosfolipases A2/metabolismo , Conformação Proteica , Transformação Bacteriana/efeitos dos fármacos
6.
J Membr Biol ; 237(1): 13-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20835705

RESUMO

Earlier we found that in the presence of Ca(2+) palmitic acid (Pal) increases the nonspecific permeability of artificial (planar and liposomal) membranes and causes permeabilization of the inner mitochondrial membrane. An assumption was made that the mechanism of Pal/Ca(2+)-induced membrane permeabilization relates to the Ca(2+)-induced phase separation of Pal and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer. In this article, we continue studying this pore. We have found that Pal plus Ca(2+) permeabilize the plasma membrane of red blood cells in a dose-dependent manner. The same picture has been revealed for stearic acid (20 µM) but not for myristic and linoleic acids. The Pal-induced permeabilization of erythrocytic membranes can also occur in the presence of Ba(2+) and Mn(2+) (200 µM), but other bivalent cations (200 µM Mg(2+), Sr(2+), Ni(2+), Co(2+)) are relatively ineffective. The formation of Pal/Ca(2+)-induced pores in the erythrocytic membranes has been found to result in the destruction of cells.


Assuntos
Cálcio/metabolismo , Estruturas da Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Ácido Palmítico/farmacologia , Animais , Bário/metabolismo , Células Cultivadas , Masculino , Manganês/metabolismo , Ratos , Ratos Wistar
7.
Cells ; 8(9)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480399

RESUMO

Although diabetes mellitus is known to be a disease associated with mitochondrial dysfunction, not everything is clear about mitochondrial Ca2+ transport and Ca2+-induced permeability transition in diabetic cells. The objective of this work was to study the operation of MCU and Ca2+-dependent mitochondrial permeabilization in the liver cells of Sprague-Dawley rats under the streptozotocin-induced type I diabetes. It was shown that two weeks after the induction of diabetes, the rate of Ca2+ uptake by the mitochondria of diabetic animals increased ~1.4-fold. The expression of MCU and MICU1 subunits did not change, yet the quantity of dominant-negative MCUb channel subunits was almost twice as lower. The organelles also became more resistant to the induction of CsA-sensitive MPT pore and less resistant to the induction of CsA-insensitive palmitate/Ca2+-induced pore. The mitochondria of diabetic liver cells also showed changes in the lipid matrix of their membranes. The content of fatty acids in the membranes grew, and microviscosity of the lipid bilayer (assessed with laurdan) increased. At the same time, lipid peroxidation (assessed by the production of malonic dialdehyde) was stimulated. The paper discusses the consequences of the diabetes-related changes in mitochondria in the context of cell physiology.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Animais , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley
8.
Biochim Biophys Acta Biomembr ; 1861(1): 288-297, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920239

RESUMO

The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50 µM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50 µM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II + III of the mitochondrial transport chain. It was discovered that at concentrations up to 10 µM, BDQ inhibited H2O2 production in mitochondria. BDQ (10-50 µM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.


Assuntos
Diarilquinolinas/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Animais , Antituberculosos/farmacologia , Ciclosporina/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Ácido Glutâmico/metabolismo , Peróxido de Hidrogênio/química , Malatos/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Permeabilidade , Potássio/metabolismo , Ratos , Ratos Wistar , Rotenona/metabolismo , Ácido Succínico/metabolismo
9.
Chem Biol Interact ; 299: 8-14, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496736

RESUMO

Bedaquiline (BDQ) is a new drug from the family of diarylquinolines, which has a potent bactericidal activity against Mycobacterium tuberculosis. This paper has examined the interaction of BDQ with model membranes (liposomes and BLM) and rat erythrocytes. It was shown that BDQ (1-10 mol%) changed the thermotropic phase behavior of DMPC liposomes, leading to the lateral phase separation in the lipid bilayer and the formation of membrane microdomains. BDQ (10-50 µM) was also demonstrated to cause permeabilization of lecithin liposomes loaded with the fluorescent dye sulforhodamine B. At the same time, it did not alter the ionic conductivity of BLM. A dynamic light scattering study showed that BDQ led to the emergence of two populations of light-scattering particles in the suspension of lecithin liposomes, suggesting that an aggregation of the vesicles took place. In rat erythrocytes, BDQ was found to induce changes in their size and shape, as well as aggregation and lysis of the cells.


Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Deformação Eritrocítica/efeitos dos fármacos , Lipossomos/metabolismo , Animais , Células Cultivadas , Difusão Dinâmica da Luz , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Lecitinas/química , Lipossomos/química , Masculino , Ratos , Ratos Wistar , Rodaminas/química , Rodaminas/metabolismo , Espectrometria de Fluorescência
10.
J Membr Biol ; 215(1): 57-68, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17443385

RESUMO

A Ca(2+)-induced phase separation of palmitic acid (PA) in the membrane of azolectin unilamellar liposomes has been demonstrated with the fluorescent membrane probe nonyl acridine orange (NAO). It has been shown that NAO, whose fluorescence in liposomal membranes is quenched in a concentration-dependent way, can be used to monitor changes in the volume of lipid phase. The incorporation of PA into NAO-labeled liposomes increased fluorescence corresponding to the expansion of membrane. After subsequent addition of Ca(2+), fluorescence decreased, which indicated separation of PA/Ca(2+) complexes into distinct membrane domains. The Ca(2+)-induced phase separation of PA was further studied in relation to membrane permeabilization caused by Ca(2+) in the PA-containing liposomes. A supposition was made that the mechanism of PA/Ca(2+)-induced membrane permeabilization relates to the initial stage of Ca(2+)-induced phase separation of PA and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer.


Assuntos
Cálcio/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Membrana Celular/metabolismo , Palmitatos/metabolismo , Lipossomas Unilamelares/metabolismo , Laranja de Acridina , Fosfatidilcolinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA