Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Comput Vis ; 104: 286-314, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23908564

RESUMO

This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(6): 6794-6806, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33031034

RESUMO

We present a new solution to egocentric 3D body pose estimation from monocular images captured from a downward looking fish-eye camera installed on the rim of a head mounted virtual reality device. This unusual viewpoint leads to images with unique visual appearance, characterized by severe self-occlusions and strong perspective distortions that result in a drastic difference in resolution between lower and upper body. We propose a new encoder-decoder architecture with a novel multi-branch decoder designed specifically to account for the varying uncertainty in 2D joint locations. Our quantitative evaluation, both on synthetic and real-world datasets, shows that our strategy leads to substantial improvements in accuracy over state of the art egocentric pose estimation approaches. To tackle the severe lack of labelled training data for egocentric 3D pose estimation we also introduced a large-scale photo-realistic synthetic dataset. xR-EgoPose offers 383K frames of high quality renderings of people with diverse skin tones, body shapes and clothing, in a variety of backgrounds and lighting conditions, performing a range of actions. Our experiments show that the high variability in our new synthetic training corpus leads to good generalization to real world footage and to state of the art results on real world datasets with ground truth. Moreover, an evaluation on the Human3.6M benchmark shows that the performance of our method is on par with top performing approaches on the more classic problem of 3D human pose from a third person viewpoint.

3.
IEEE Trans Pattern Anal Mach Intell ; 38(7): 1342-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27295458

RESUMO

While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image.

4.
IEEE Trans Pattern Anal Mach Intell ; 34(8): 1496-508, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22156102

RESUMO

This paper presents a unified approach to solve different bilinear factorization problems in computer vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization where one of the factors must lie on a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear factorization problem that decouples the core bilinear aspect from the manifold specificity. We then tackle the resulting constrained optimization problem via Augmented Lagrange Multipliers. The strength and the novelty of our approach is that this framework can seamlessly handle different computer vision problems. The algorithm is such that only a projector onto the manifold constraint is needed. We present experiments and results for some popular factorization problems in computer vision such as rigid, non-rigid, and articulated Structure from Motion, photometric stereo, and 2D-3D non-rigid registration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA