Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 628(Pt A): 486-498, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940140

RESUMO

HYPOTHESIS: The wettability change from oil-wet towards more water-wet conditions by injecting diluted brine can improve oil recovery from reservoir rocks, known as low salinity waterflooding. We investigated the underlying pore-scale mechanisms of this process to determine if improved recovery was associated with a change in local contact angle, and if additional displacement was facilitated by the formation of micro-dispersions of water in oil and water film swelling. EXPERIMENTS: X-ray imaging and high-pressure and temperature flow apparatus were used to investigate and compare high and low salinity waterflooding in a carbonate rock sample. The sample was placed in contact with crude oil to obtain an initial wetting state found in hydrocarbon reservoirs. High salinity brine was then injected at increasing flow rates followed by low salinity brine injection using the same procedure. FINDINGS: Development of water micro-droplets within the oil phase and detachment of oil layers from the rock surface were observed after low salinity waterflooding. During high salinity waterflooding, contact angles showed insignificant changes from the initial value of 115°, while the mean curvature and local capillary pressure values remained negative, consistent with oil-wet conditions. However, with low salinity, the decrease in contact angle to 102° and the shift in the mean curvature and capillary pressure to positive values indicate a wettability change. Overall, our analysis captured the in situ mechanisms and processes associated with the low salinity effect and ultimate increase in oil recovery.

2.
Sci Rep ; 11(1): 15063, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301968

RESUMO

X-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates. Low salinity brine initially invaded large pores, consistent with displacement in an oil-wet rock. However, as more brine was injected, a redistribution of fluids was observed; smaller pores and throats were invaded by brine and the displaced oil moved into larger pore elements. Furthermore, in situ contact angles and curvatures of oil-brine interfaces were measured to characterize wettability changes within the pore space and calculate capillary pressure. Contact angles, mean curvatures and capillary pressures all showed a shift from weakly oil-wet towards a mixed-wet state as more pore volumes of low salinity brine were injected into the sample. Overall, this study establishes a methodology to characterize and quantify wettability changes at the pore scale which appears to be the dominant mechanism for oil recovery by LSW.

3.
J Am Chem Soc ; 131(8): 3007-15, 2009 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-19209851

RESUMO

Using DFT techniques, we show that triplet cyclopentadienylcobalt activates Si-H bonds to generate singlet silylcobalt hydrides without the intervention of sigma-silanes. The cobalt is configurationally unstable, as evidenced by the diastereoisomerization of derivatives bearing chiral silyl ligands. Inversion at the metal proceeds in the singlet state via a bridging hydride. We demonstrate that a two-state mechanism for the transformation of silyl hydride cobalt complexes into disilyl dihydride cobalt species is feasible. Our calculations predict that catalytic hydrosilylation of alkenes should be achievable in the coordination sphere of cyclopentadienylcobalt.

4.
Angew Chem Int Ed Engl ; 48(10): 1810-3, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19173358

RESUMO

Cobalt cyclopentadienyl complexes incorporating a fumarate and a CO ligand (see picture) efficiently catalyze inter- and intramolecular [2+2+2] cycloadditions of alkynes, nitriles, and/or alkenes to give benzenes, pyridines, or 1,3-cyclohexadienes. Unlike catalysts such as [CpCo(CO)(2)] or [CpCo(C(2)H(4))(2)] (Cp = C(5)H(5)), they are air-stable, easy to handle, compatible with microwave conditions, and do not necessarily require irradiation to be active.

6.
J Am Chem Soc ; 129(28): 8860-71, 2007 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-17585766

RESUMO

To understand some experimental data at odds with the computed mechanism of the CpCo(L2)-catalyzed [2 + 2 + 2] cyclotrimerization of ethyne, DFT computations were carried out following the fate of methyl- and hydroxycarbonyl-substituted alkynes to give the corresponding arenes. The key intermediate in all cases is a triplet cobaltacyclopentadiene obtained by oxidative coupling of the corresponding CpCo(bisalkyne) complex and subsequent spin change via a minimum energy crossing point (MECP). From that species, two different catalytic cycles lead to an arene product, depending on the nature of the alkyne and other ligands present: either alkyne ligation to furnish a cobaltacyclopentadiene(alkyne) intermediate or trapping by a sigma-donor ligand to generate a coordinatively saturated cobaltacyclopentadiene(PR3) complex. The former leads to the CpCo-complexed arene product via intramolecular cobalt-assisted [4 + 2] cycloaddition, whereas the latter may, in the case of a reactive dienophile (butynedioic acid), undergo direct intermolecular [4 + 2] cycloaddition to generate a cobaltanorbornene. The bridgehead cobalt atom is then reductively eliminated after another change in spin state from singlet to triplet. The necessary conditions for one or the other mechanistic pathway are elaborated.

7.
J Am Chem Soc ; 128(26): 8509-20, 2006 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-16802817

RESUMO

The mechanism of the cobalt-mediated [2 + 2 + 2] cycloaddition of two alkynes to one alkene to give CpCo-complexed 1,3-cyclohexadienes (cyclic oligomerization) has been studied by means of DFT computations. In contrast to the mechanism of alkyne cyclotrimerization, in which final alkyne inclusion into the common cobaltacyclopentadiene features a direct "collapse" pathway to the complexed arene, alkene incorporation proceeds via insertion into a Co-C sigma-bond rather than inter- or intramolecular [4 + 2] cycloaddition. The resulting seven-membered metallacycle 7 is a key intermediate which leads to either CpCo-complexed cyclohexadiene 5 or hexatriene 13. The latter transformation, particularly favorable for ethene, accounts, in part, for the linear oligomerization observed occasionally in these reactions. With aromatic double bonds, a C-H activation mechanism by the cobaltacyclopentadiene seems more advantageous in hexatriene product formation. Detailed investigations of high- and low-spin potential energy surfaces are presented. The reactivity of triplet cobalt species was found kinetically disfavored over that of their singlet counterparts. Moreover, it could not account for the formation of CpCo-complexed hexatrienes. However, triplet cobalt complexes cannot be ruled out since all unsaturated species appearing in this study were found to exhibit triplet ground states. Consequently, a reaction pathway that involves a mixing of both spin-state energy surfaces is also described (two-state reactivity). Support for such a pathway comes from the location of several low-lying minimum-energy crossing points (MECPs) of the two surfaces.


Assuntos
Alcenos/química , Alcinos/química , Cobalto/química , Modelos Químicos , Compostos Organometálicos/síntese química , Simulação por Computador , Ciclização , Estrutura Molecular , Compostos Organometálicos/química , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA