Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Front Neuroendocrinol ; 67: 101018, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870647

RESUMO

The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.


Assuntos
Peixes , Mamíferos , Animais , Peixes/genética , Peixes/metabolismo , Hipófise/metabolismo , Hormônios/metabolismo
2.
Gen Comp Endocrinol ; 287: 113344, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794734

RESUMO

Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.


Assuntos
Peixes , Gonadotrofos/metabolismo , Mamíferos , Hipófise/metabolismo , Animais , Maturidade Sexual
3.
Gen Comp Endocrinol ; 229: 19-31, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26899720

RESUMO

We have previously characterized the response to gonadotropin-releasing hormone (Gnrh) 2 in luteinizing hormone (lhb)-expressing cells from green fluorescent protein (Gfp)-transgenic medaka (Oryzias latipes), with regard to changes in the cytosolic Ca(2+) concentration. In the current study we present the corresponding responses to Gnrh1 and Gnrh3. Ca(2+) imaging revealed three response patterns to Gnrh1 and Gnrh3, one monophasic and two types of biphasic patterns. There were few significant differences in the shape of the response patterns between the three Gnrh forms, although the amplitude of the Ca(2+) signal was considerably lower for Gnrh1 and Gnrh3 than for Gnrh2, and the distribution between the two different biphasic patterns differed. The different putative Ca(2+) sources were examined by depleting intracellular Ca(2+) stores with thapsigargin, or preventing influx of extracellular Ca(2+) by either extracellular Ca(2+) depletion or the L-type Ca(2+)-channel blocker verapamil. Both Gnrh1 and 3 relied on Ca(2+) from both intracellular and extracellular sources, with some unexpected differences in the relative contribution. Furthermore, gene expression of Gnrh-receptors (gnrhr) in whole pituitaries was studied during development from juvenile to adult. Only two of the four identified medaka receptors were expressed in the pituitary, gnrhr1b and gnrhr2a, with the newly discovered gnrhr2a showing the highest expression level at all stages as analyzed by quantitative PCR. While both receptors differed in expression level according to developmental stage, only the expression of gnrhr2a showed a clear-cut increase with gonadal maturation. RNA sequencing analysis of FACS-sorted Gfp-positive lhb-cells revealed that both gnrhr1b and gnrhr2a were expressed in lhb-expressing cells, and confirmed the higher expression of gnrhr2a compared to gnrhr1b. These results show that although lhb-expressing gonadotropes in medaka show similar Ca(2+) response patterns to all three endogenous Gnrh forms through the activation of two different receptors, gnrhr1b and gnrhr2a, the differences observed between the Gnrh forms indicate activation of different Ca(2+) signaling pathways.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Oryzias/metabolismo , Receptores LHRH/metabolismo , Animais , Animais Geneticamente Modificados , Cálcio
4.
Physiol Genomics ; 46(21): 808-20, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25228281

RESUMO

RNA-Seq has become a widely used method to study transcriptomes, and it is now possible to perform RNA-Seq on almost any sample. Nevertheless, samples obtained from small cell populations are particularly challenging, as biases associated with low amounts of input RNA can have strong and detrimental effects on downstream analyses. Here we compare different methods to normalize RNA-Seq data obtained from minimal input material. Using RNA from isolated medaka pituitary cells, we have amplified material from six samples before sequencing. Both synthetic and real data are used to evaluate different normalization methods to obtain a robust and reliable pipeline for analysis of RNA-Seq data from samples with very limited input material. The analysis outlined here shows that quantile normalization outperforms other more commonly used normalization procedures when using amplified RNA as input and will benefit researchers employing low amounts of RNA in similar experiments.


Assuntos
Oryzias/genética , Análise de Sequência de RNA/métodos , Animais , Animais Geneticamente Modificados , Células Cultivadas , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Hipófise/citologia , RNA/isolamento & purificação , Reprodutibilidade dos Testes
5.
Sci Data ; 10(1): 62, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720883

RESUMO

Directing both organismal homeostasis and physiological adaptation, the pituitary is a key endocrine gland in all vertebrates. One of its major tasks is to coordinate sexual maturation through the production and release of hormones stimulating gonad development. In order to study its developmental dynamics in the model fish medaka (Oryzias latipes), we sampled both the pituitary and the ovaries of 68 female fish. Of these, 55 spanned the entire course of sexual maturation from prepubertal juveniles to spawning adults. An additional 13 showed either considerably faster or slower growth and development than the majority of fish. We used histological examination of the ovaries to determine a histological maturation stage, and analyzed the pituitary glands using RNA-seq optimized for low input. Taken together, these data reveal the timing of hormone production priorities, and form a comprehensive resource for the study of their regulation.


Assuntos
Oryzias , RNA-Seq , Animais , Feminino , Oryzias/genética , Hipófise , Maturidade Sexual , Fatores de Tempo
6.
Front Microbiol ; 13: 1022639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532448

RESUMO

Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 ß-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.

7.
Front Microbiol ; 13: 1008870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532495

RESUMO

Aeromonas species are Gram-negative bacteria that infect various living organisms and are ubiquitously found in different aquatic environments. In this study, we used whole genome sequencing (WGS) to identify and compare the antimicrobial resistance (AMR) genes, integrons, transposases and plasmids found in Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii isolated from Indian major carp (Catla catla), Indian carp (Labeo rohita), catfish (Clarias batrachus) and Nile tilapia (Oreochromis niloticus) sampled in India. To gain a wider comparison, we included 11 whole genome sequences of Aeromonas spp. from different host species in India deposited in the National Center for Biotechnology Information (NCBI). Our findings show that all 15 Aeromonas sequences examined had multiple AMR genes of which the Ambler classes B, C and D ß-lactamase genes were the most dominant. The high similarity of AMR genes in the Aeromonas sequences obtained from different host species point to interspecies transmission of AMR genes. Our findings also show that all Aeromonas sequences examined encoded several multidrug efflux-pump proteins. As for genes linked to mobile genetic elements (MBE), only the class I integrase was detected from two fish isolates, while all transposases detected belonged to the insertion sequence (IS) family. Only seven of the 15 Aeromonas sequences examined had plasmids and none of the plasmids encoded AMR genes. In summary, our findings show that Aeromonas spp. isolated from different host species in India carry multiple AMR genes. Thus, we advocate that the control of AMR caused by Aeromonas spp. in India should be based on a One Health approach.

8.
Clin Epigenetics ; 14(1): 115, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115961

RESUMO

BACKGROUND: Cystoscopy is the gold standard for bladder cancer detection, but is costly, invasive and has imperfect diagnostic accuracy. We aimed to identify novel and accurate DNA methylation biomarkers for non-invasive detection of bladder cancer in urine, with the potential to reduce the number of cystoscopies among hematuria patients. RESULTS: Biomarker candidates (n = 32) were identified from methylome sequencing of urological cancer cell lines (n = 16) and subjected to targeted methylation analysis in tissue samples (n = 60). The most promising biomarkers (n = 8) were combined into a panel named BladMetrix. The performance of BladMetrix in urine was assessed in a discovery series (n = 112), consisting of bladder cancer patients, patients with other urological cancers and healthy individuals, resulting in 95.7% sensitivity and 94.7% specificity. BladMetrix was furthermore evaluated in an independent prospective and blinded series of urine from patients with gross hematuria (n = 273), achieving 92.1% sensitivity, 93.3% specificity and a negative predictive value of 98.1%, with the potential to reduce the number of cystoscopies by 56.4%. CONCLUSIONS: We here present BladMetrix, a novel DNA methylation urine test for non-invasive detection of bladder cancer, with high accuracy across tumor grades and stages, and the ability to spare a significant number of cystoscopies among patients with gross hematuria.


Assuntos
Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/urina , Metilação de DNA , Hematúria/diagnóstico , Hematúria/genética , Humanos , Estudos Prospectivos , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/urina
9.
Med Mycol ; 49(4): 375-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21067314

RESUMO

Toll-like receptors (TLRs) are involved in the host defense against Aspergillus fumigatus infections, and some TLRs may even be exploited by the mould to escape immune mechanisms. We have previously shown that conidia from A. fumigatus increase expression of TLR5 in human monocytes. When further investigating a possible role of TLR5 in A. fumigatus infections, we observed a decrease in conidial viability after culturing with TLR5-knockdown THP-1 monocytes. Secondly, our experiments showed an increase in conidial viability when THP-1 monocytes, together with flagellin, are cultured with conidia. Thirdly, we found that treatment of THP-1 monocytes with a monoclonal antibody against TLR5 resulted in increased conidial viability after culturing. Experiments with a HEK-293 cell line only expressing TLR5 did not indicate that conidia directly interact with TLR5. Further studies of the intracellular molecular mechanisms activated concomitant with activation of TLR5 that have an enhancing effect on the viability of conidia may shed new light on the defense against conidia in monocytic cells, and possibly also on the function of the TLR5 system.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Monócitos/imunologia , Receptor 5 Toll-Like/imunologia , Aspergillus fumigatus/crescimento & desenvolvimento , Flagelina/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Hifas/crescimento & desenvolvimento , Viabilidade Microbiana , Monócitos/microbiologia , RNA Interferente Pequeno/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/imunologia
10.
Sci Data ; 8(1): 279, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711832

RESUMO

The pituitary is the vertebrate endocrine gland responsible for the production and secretion of several essential peptide hormones. These, in turn, control many aspects of an animal's physiology and development, including growth, reproduction, homeostasis, metabolism, and stress responses. In teleost fish, each hormone is presumably produced by a specific cell type. However, key details on the regulation of, and communication between these cell types remain to be resolved. We have therefore used single-cell sequencing to generate gene expression profiles for 2592 and 3804 individual cells from the pituitaries of female and male adult medaka (Oryzias latipes), respectively. Based on expression profile clustering, we define 15 and 16 distinct cell types in the female and male pituitary, respectively, of which ten are involved in the production of a single peptide hormone. Collectively, our data provide a high-quality reference for studies on pituitary biology and the regulation of hormone production, both in fish and in vertebrates in general.


Assuntos
Hormônios/biossíntese , Oryzias , Hipófise/citologia , RNA-Seq , Análise de Célula Única , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Oryzias/fisiologia , Transcriptoma
11.
PLoS One ; 16(1): e0245462, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507913

RESUMO

Accumulating evidence indicates that some pituitary cell types are organized in complex networks in both mammals and fish. In this study, we have further investigated the previously described cellular extensions formed by the medaka (Oryzias latipes) luteinizing hormone gonadotropes (Lh cells). Extensions, several cell diameters long, with varicosity-like swellings, were common both in vitro and in vivo. Some extensions approached other Lh cells, while others were in close contact with blood vessels in vivo. Gnrh further stimulated extension development in vitro. Two types of extensions with different characteristics could be distinguished, and were classified as major or minor according to size, origin and cytoskeleton protein dependance. The varicosity-like swellings appeared on the major extensions and were dependent on both microtubules and actin filaments. Immunofluorescence revealed that Lhß protein was mainly located in these swellings and at the extremity of the extensions. We then investigated whether these extensions contribute to network formation and clustering, by following their development in primary cultures. During the first two days in culture, the Lh cells grew long extensions that with time physically attached to other cells. Successively, tight cell clusters formed as cell somas that were connected via extensions migrated towards each other, while shortening their extensions. Laser photolysis of caged Ca2+ showed that Ca2+ signals originating in the soma propagated from the soma along the major extensions, being particularly visible in each swelling. Moreover, the Ca2+ signal could be transferred between densely clustered cells (sharing soma-soma border), but was not transferred via extensions to the connected cell. In summary, Lh gonadotropes in medaka display a complex cellular structure of hormone-containing extensions that are sensitive to Gnrh, and may be used for clustering and possibly hormone release, but do not seem to contribute to communication between cells themselves.


Assuntos
Gonadotrofos/citologia , Oryzias , Animais , Sinalização do Cálcio , Células Cultivadas , Citoesqueleto/metabolismo
12.
J Endocrinol ; 245(1): 21-37, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977313

RESUMO

Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) produced by the gonadotropes play a major role in control of reproduction. Contrary to mammals and birds, Lh and Fsh are mostly produced by two separate cell types in teleost. Here, we investigated gonadotrope plasticity, using transgenic lines of medaka (Oryzias latipes) where DsRed2 and hrGfpII are under the control of the fshb and lhb promotors respectively. We found that Fsh cells appear in the pituitary at 8 dpf, while Lh cells were previously shown to appear at 14 dpf. Similar to Lh cells, Fsh cells show hyperplasia from juvenile to adult stages. Hyperplasia is stimulated by estradiol. Both Fsh and Lh cells show hypertrophy during puberty with similar morphology. They also share similar behavior, using their cellular extensions to make networks. We observed bi-hormonal gonadotropes in juveniles and adults but not in larvae where only mono-hormonal cells are observed, suggesting the existence of phenotypic conversion between Fsh and Lh in later stages. This is demonstrated in cell culture, where some Fsh cells start to produce Lhß, a phenomenon enhanced by gonadotropin-releasing hormone (Gnrh) stimulation. We have previously shown that medaka Fsh cells lack Gnrh receptors, but here we show that with time in culture, some Fsh cells start responding to Gnrh, while fshb mRNA levels are significantly reduced, both suggestive of phenotypic change. All together, these results reveal high plasticity of gonadotropes due to both estradiol-sensitive proliferation and Gnrh promoted phenotypic conversion, and moreover, show that gonadotropes lose part of their identity when kept in cell culture.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Oryzias/metabolismo , Maturidade Sexual/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Hormônio Foliculoestimulante/genética , Expressão Gênica , Gonadotrofos/citologia , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Luteinizante/genética , Masculino , Oryzias/genética , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/genética
13.
Endocrinology ; 160(12): 3018-3032, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621882

RESUMO

Reproductive function in vertebrates is stimulated by GnRH that controls the synthesis and release of the two pituitary gonadotropins, FSH and LH. FSH and LH, which regulate different stages of gonadal development, are produced by two different cell types in the fish pituitary. This is in contrast to the situation in mammals and birds, and it enables investigation of their differential regulation. In the present study, we used fluorescence in situ hybridization to show that Lh cells in adult female medaka express Gnrh receptors, whereas Fsh cells do not. This result was confirmed by patch-clamp recordings and by cytosolic Ca2+ measurements on dispersed pituitary cells, where Lh cells, but not Fsh cells, responded to Gnrh1 by biphasic alteration in action-potential frequencies and cytosolic Ca2+ levels. In contrast, both Fsh and Lh cells are able to respond to Gnrh1 in brain-pituitary tissue slices both electrically and by elevating the cytosolic Ca2+ levels. Using Ca2+ uncaging in combination with patch-clamp recordings and cytosolic Ca2+ measurements, we show that Fsh and Lh cells form homotypic and heterotypic networks in the pituitary. Taken together, these results show that the effects of Gnrh1 on Fsh release in adult female medaka are indirect and probably mediated via Lh cells.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Hipófise/citologia , Animais , Animais Geneticamente Modificados , Comunicação Celular , Feminino , Gonadotrofos/fisiologia , Neurônios/citologia , Oryzias , Hipófise/metabolismo
14.
J Endocrinol ; 240(2): 361-377, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594119

RESUMO

Luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) control reproduction in vertebrates. Using a transgenic line of medaka, in which green fluorescent protein expression is controlled by the endogenous lhb promotor, we studied development and plasticity of Lh cells, comparing juveniles and adults of both genders. Confocal imaging and 3D reconstruction revealed hypertrophy and hyperplasia of Lh cells in both genders from juvenile to adult stages. We show that Lh cell hyperplasia may be caused by recruitment of existing pituitary cells that start to produce lhb, as evidenced by time lapse recordings of primary pituitary cell cultures, and/or through Lh cell proliferation, demonstrated through a combination of 5-bromo-2'-deoxyuridine incubation experiments and proliferating cell nuclear antigen staining. Proliferating Lh cells do not belong to the classical type of multipotent stem cells, as they do not stain with anti-sox2. Estradiol exposure in vivo increased pituitary cell proliferation, particularly Lh cells, whereas pituitary lhb and gpa expression levels decreased. RNA-seq and in situ hybridization showed that Lh cells express two estrogen receptors, esr1 and esr2b, and the aromatase gene cyp19a1b, suggesting a direct effect of estradiol, and possibly androgens, on Lh cell proliferation. In conclusion, our study reveals a high degree of plasticity in the medaka Lh cell population, resulting from a combination of recruitment and cell proliferation.


Assuntos
Plasticidade Celular/fisiologia , Proliferação de Células/fisiologia , Gonadotrofos/metabolismo , Hipófise/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Masculino , Microscopia Confocal , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Oryzias/metabolismo , Imagem com Lapso de Tempo/métodos
15.
J Vis Exp ; (138)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30222142

RESUMO

Primary cell culture is a powerful tool commonly used by scientists to study cellular properties and mechanisms of isolated cells in a controlled environment. Despite vast differences in the physiology between mammals and fish, primary cell culture protocols from fish are often based on mammalian culture conditions, often with only minor modifications. The environmental differences affect not only body temperature, but also blood serum parameters such as osmolality, pH, and pH buffer capacity. As cell culture media and similar working solutions are meant to mimic characteristics of the extracellular fluid and/or blood serum to which a cell is adapted, it is crucial that these parameters are adjusted specifically to the animal in question. The current protocol describes optimized primary culture conditions for medaka (Oryzias latipes). The protocol provides detailed steps on how to isolate and maintain healthy dissociated pituitary cells for more than one week and includes the following steps: 1. the adjustment of the osmolality to the values found in medaka blood plasma, 2. the adjustment of the incubation temperature to normal medaka temperature (here in the aquarium facility), and 3. the adjustment of the pH and bicarbonate buffer to values comparable to other fish species living at similar temperatures. The results presented using the described protocol promote physiologically meaningful results for medaka and can be used as a reference guide by scientists making primary cell cultures from other non-mammalian species.


Assuntos
Adeno-Hipófise/metabolismo , Cultura Primária de Células/métodos , Animais , Peixes , Adeno-Hipófise/citologia
16.
Mol Cell Endocrinol ; 372(1-2): 128-39, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562421

RESUMO

We have characterized the response to gonadotropin-releasing hormone 2 (GnRH2) in luteinizing hormone producing cells from gfp-transgenic medaka. Teleosts have separate cells producing the two types of gonadotropins, enabling us for the first time to study the intracellular signaling that controls secretion of each gonadotropin separately. Pituitary cell cultures were prepared, and lhb-producing cells were selected by their GFP expression. Cytosolic Ca(2+) imaging revealed three response patterns to GnRH2, one monophasic and two types of biphasic patterns. The Ca(2+) sources were examined by depleting intracellular Ca(2+) stores and preventing influx of extracellular Ca(2+). Both treatments reduced response amplitude, and affected latency and time to peak. Blocking L-type Ca(2+) channels reduced amplitude and time to peak, but did not remove extracellular Ca(2+) contribution. Patch-clamp recordings showed spontaneous action potentials in several cells, and GnRH2 increased the firing frequency. Presence of Ca(2+)-activated K(+) channels was revealed, BK channels being the most prominent.


Assuntos
Sinalização do Cálcio , Proteínas de Peixes/genética , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Luteinizante Subunidade beta/genética , Oryzias/genética , Potenciais de Ação , Animais , Animais Geneticamente Modificados , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Ionóforos de Cálcio/farmacologia , Células Cultivadas , Feminino , Proteínas de Peixes/metabolismo , Gonadotrofos/efeitos dos fármacos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Ionomicina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Hormônio Luteinizante Subunidade beta/metabolismo , Oryzias/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Regiões Promotoras Genéticas , Verapamil/farmacologia
17.
PLoS One ; 8(10): e77396, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130881

RESUMO

Hormones secreted from the pituitary gland regulate important processes such as development, growth and metabolism, reproduction, water balance, and body pigmentation. Synthesis and secretion of pituitary hormones are regulated by different factors from the hypothalamus, but also through feedback mechanisms from peripheral organs, and from the pituitary itself. In the European eel extensive attention has been directed towards understanding the different components of the brain-pituitary-gonad axis, but little is known about the regulation of upstream processes in the pituitary gland. In order to gain a broader mechanistic understanding of the eel pituitary gland, we have performed RNA-seq transcriptome profiling of the pituitary of prepubertal female silver eels. RNA-seq reads generated on the Illumina platform were mapped to the recently assembled European eel genome. The most abundant transcript in the eel pituitary codes for pro-opiomelanocortin, the precursor for hormones of the melanocortin system. Several genes putatively involved in downstream processing of pro-opiomelanocortin were manually annotated, and were found to be highly expressed, both by RNA-seq and by qPCR. The melanocortin system, which affects skin color, energy homeostasis and in other teleosts interacts with the reproductive system, has so far received limited attention in eels. However, since up to one third of the silver eel pituitary's mRNA pool encodes pro-opiomelanocortin, our results indicate that control of the melanocortin system is a major function of the eel pituitary.


Assuntos
Anguilla/genética , Melanocortinas/genética , Hipófise/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Expressão Gênica , Ontologia Genética , Melanocortinas/química , Dados de Sequência Molecular , Pró-Opiomelanocortina/química , Pró-Opiomelanocortina/genética , Transcriptoma
18.
Mitochondrion ; 11(6): 935-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21907833

RESUMO

Fibroblasts infected by Human Cytomegalovirus (CMV) undergo a robust increase in mitochondrial biogenesis with a corresponding increase in mitochondrial activity that is partly dependent on the viral anti-apoptotic pUL37x1 protein (vMIA). The increased respiration activity is blocked by the mitochondrial translation inhibitor chloramphenicol, which additionally suppresses viral production. Intriguingly, chloramphenicol and pUL37x1 depletion have different effects on respiration capacity but similar effects on CMV production, suggesting that pUL37x1 promotes viral replication by efficient utilization of new mitochondria. These results argue for a role of pUL37x1 beyond controlling apoptosis.


Assuntos
Infecções por Citomegalovirus/fisiopatologia , Fibroblastos/virologia , Mitocôndrias/metabolismo , Respiração Celular , Fibroblastos/ultraestrutura , Humanos , Proteínas Imediatamente Precoces/metabolismo , Mitocôndrias/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA