Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Pharm ; 21(6): 3061-3076, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38757678

RESUMO

Melanoma, characterized as the most aggressive and metastatic form of skin cancer, currently has limited treatment options, predominantly chemotherapy and radiation therapy. However, the drawbacks associated with parenterally administered chemotherapy underscore the urgent need for alternative compounds to combat melanoma effectively. Hesperidin (HES), a flavonoid present in various citrus fruits, exhibits promising anticancer activity. Nevertheless, the clinical utility of HES is hindered by challenges such as poor water solubility, a short half-life, and low oral bioavailability. In response to these limitations, we introduced a novel approach by formulating HES-loaded exosomes (Exo-HES). Isolation of exosomes was achieved through the ultracentrifugation method, and HES was efficiently loaded using the sonication method. The resulting formulations displayed a desirable particle size (∼106 nm) and exhibited a spherical morphology, as confirmed by scanning electron and atomic force microscopy. In vitro studies conducted on B16F10 cell lines demonstrated higher cytotoxicity of Exo-HES compared to free HES, supported by enhanced cellular uptake validated through coumarin-6-loaded exosomes. This superior cytotoxicity was further evidenced by DNA fragmentation, increased generation of free radicals (ROS), loss of mitochondrial membrane potential, and effective inhibition of colony formation. The antimetastatic properties of Exo-HES were confirmed through wound healing and transwell migration assays. Oral pharmacokinetics studies revealed a remarkable increase of approximately 2.5 times in oral bioavailability and half-life of HES when loaded into exosomes. Subsequent in vivo experiments utilizing a B16F10-induced melanoma model in Swiss mice established that Exo-HES exhibited superior anticancer activity compared to HES after oral administration. Importantly, no biochemical, hematological, or histological toxicities were observed in tumor-bearing mice treated with Exo-HES. These findings suggest that exosomes loaded with HES represent a promising nanocarrier strategy to enhance the therapeutic effectiveness of hesperidin in melanoma treatment.


Assuntos
Exossomos , Hesperidina , Hesperidina/química , Hesperidina/farmacologia , Hesperidina/administração & dosagem , Hesperidina/farmacocinética , Animais , Camundongos , Linhagem Celular Tumoral , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Sistemas de Liberação de Medicamentos/métodos
2.
AAPS PharmSciTech ; 24(6): 166, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552397

RESUMO

Exosomes are biological nanovesicles that are intrinsically loaded with thousands of biomacromolecules and are principally responsible for cell-to-cell communication. Inspired by the natural payload, they have been extensively investigated as drug delivery vehicles; however, the drug distribution, whether into or onto exosomes, is still debatable. In the present work, we have tried to investigate it systemically by selecting 5-fluorouracil (5-FU) (hydrophilic) and paclitaxel (PAC) (hydrophobic), drugs with very different physicochemical characteristics, for the loading to the exosomes. Exosomes were obtained from bovine milk, and the drugs were loaded using three different methods: incubation, sonication, and triton x-100. The particle size was found to be approximately 100 nm in all the cases; however, the highest drug loading was found in the sonication method. Fluorescence spectrophotometer, EDX analysis, EDX mapping, XPS, and XRD analysis indicated the possible presence of more drugs over the surface in the case of the incubation method. Drugs loaded by the sonication method had more controlled release than simple incubation and triton x-100. The method of drug loading had an insignificant effect on the cytotoxicity while in line with our previous observation, the combination (PAC and 5-FU) exhibited synergism as evidenced by ROS assay, colony formation assay, and mitochondrial membrane potential assay.


Assuntos
Exossomos , Preparações Farmacêuticas/análise , Linhagem Celular Tumoral , Exossomos/química , Octoxinol , Sistemas de Liberação de Medicamentos , Paclitaxel/farmacologia , Fluoruracila
3.
AAPS PharmSciTech ; 24(6): 165, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552374

RESUMO

Klebsiella pneumoniae is regarded as one of the most profound bacteria isolated from the debilitating injuries caused by burn wounds. In addition, the multidrug resistance (MDR) and biofilm formation make treating burn patients with clinically available antibiotics difficult. Bacteriophage therapy has been proven an effective alternative against biofilm-mediated wound infections caused by MDR bacterial strains. In the current study, the bacteriophage (BPKPФ1) against MDR Klebsiella pneumoniae was isolated and loaded into the chitosan microparticles (CHMPs), which was later incorporated into the Sepineo P 600 to convert into a gel (BPKPФ1-CHMP-gel). BPKPФ1 was characterized for lytic profile, morphological class, and burst size, which revealed that the BPKPФ1 belongs to the family Siphoviridae. Moreover, BPKPФ1 exhibited a narrow host range with 128 PFU/host cell of burst size. The BPKPФ1-loaded CHMPs showed an average particle size of  1.96 ± 0.51 µm, zeta potential 32.16 ± 0.41 mV, and entrapment efficiency in the range of 82.44 ± 1.31%. Further, the in vitro antibacterial and antibiofilm effectiveness of BPKPФ1-CHMPs-gel were examined. The in vivo potential of the BPKPФ1-CHMPs-gel was assessed using a rat model with MDR Klebsiella pneumoniae infected burn wound, which exhibited improved wound contraction (89.22 ± 0.48%) in 28 days with reduced inflammation, in comparison with different controls. Data in hand suggest the potential of bacteriophage therapy to be developed as personalized therapy in case of difficult-to-treat bacterial infections.


Assuntos
Bacteriófagos , Queimaduras , Quitosana , Infecções por Klebsiella , Infecção dos Ferimentos , Ratos , Animais , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Klebsiella pneumoniae , Géis , Queimaduras/tratamento farmacológico , Quitosana/farmacologia
4.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077466

RESUMO

Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid-polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Antineoplásicos/uso terapêutico , Portadores de Fármacos , Feminino , Humanos , Lipídeos/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
AAPS PharmSciTech ; 23(6): 175, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750993

RESUMO

Onychomycosis is the most common fungal infection of the nail affecting the skin under the fingertips and the toes. Currently, available therapy for onychomycosis includes oral and topical therapies, either alone or in combination. Oral antifungal medication has been associated with poor drug bioavailability and potential gastrointestinal and systemic side effects. The objective of this study was to prepare and evaluate the luliconazole nail lacquer (LCZ-NL) for the effective treatment of onychomycosis. In the current work, LCZ-NL was formulated in combination with penetration enhancers to overcome poor penetration. A 32 full factorial formulation design of experiment (DOE) was applied for optimization of batches with consideration of dependent (drying time, viscosity, and rate of drug diffusion) and independent (solvent ratio and film former ratio) variables. The optimized formulation was selected based on drying time, viscosity, and rate of drug diffusion. The optimized formulation was further evaluated for % non-volatile content assay, smoothness of flow, water resistance, drug content, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), in vitro drug release, ex vivo transungual permeation, antifungal efficacy, and stability study. The optimized LCZ-NL contained 70:30 solvent ratio and 1:1 film former ratio and was found to have ~ 1.79-fold higher rate of drug diffusion in comparison with LULY™. DSC and XRD studies confirmed that luliconazole retains its crystalline property in the prepared formulation. Antifungal study against Trichophyton spp. showed that LCZ-NL has comparatively higher growth inhibition than LULY™. Hence, developed LCZ-NL can be a promising topical drug delivery system for treating onychomycosis.


Assuntos
Onicomicose , Administração Tópica , Antifúngicos , Humanos , Imidazóis , Laca , Unhas , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Solventes
6.
AAPS PharmSciTech ; 23(7): 249, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056225

RESUMO

Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.


Assuntos
Inteligência Artificial , Química Farmacêutica , Disponibilidade Biológica , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes , Solubilidade , Água
7.
AAPS PharmSciTech ; 22(5): 158, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34009603

RESUMO

The present study was aimed to enhance the mitochondrial function in oxidative stress-induced diabetes. To achieve this, Ficus religiosa L. extract loaded solid lipid nanoparticles (ETNPs) were prepared and functionalized by using triphenylphosphonium. Developed nanoparticles demonstrated desired quality attributes with sustained release for up to 24 h and excellent storage stability for up to 180 days at 40 ± 2°C and 75 ± 5% relative humidity. In vitro cytotoxicity assessment showed no toxicity of ETNPs. Interestingly, oral administration of ETNPs to diabetic rats demonstrated improved mitochondrial function by normalizing the mitochondrial morphology, intracellular calcium ion concentration, complexes I, II, IV, and V activity, mitochondrial membrane potential, and antioxidant levels. Further, reduction in apoptotic markers viz. cytochrome-C, caspase-3, and caspase-9 was observed following the ETNP treatment. Moreover, significant reduction in blood glucose and glycosylated hemoglobin while significant improvement in plasma insulin was observed as compared to the diabetic group following the treatment with developed formulation. Furthermore, histopathology studies confirmed the safety of the developed formulation and thus, data in hand collectively suggest that proposed strategy can be effectively used to improve the mitochondrial function in oxidative stress-induced diabetes along with better control over blood glucose and glycosylated hemoglobin.


Assuntos
Antioxidantes/farmacologia , Ficus/química , Nanopartículas , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocromos c/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/isolamento & purificação , Extratos Vegetais/administração & dosagem , Ratos , Ratos Wistar
8.
Mol Pharm ; 16(9): 3916-3925, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31318574

RESUMO

Biofilm resistance is one of the severe complications associated with chronic wound infections, which impose extreme microbial tolerance against antibiotic therapy. Interestingly, deoxyribonuclease-I (DNase-I) has been empirically proved to be efficacious in improving the antibiotic susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength. Moreover, silver sulfadiazine, a frontline therapy in burn wound infections, exhibits delayed wound healing due to fibroblast toxicity. In this study, a chitosan gel loaded with solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) and supplemented with DNase-I has been developed to reduce the fibroblast cytotoxicity and overcome the biofilm-imposed resistance. The extensive optimization using the Box-Behnken design (BBD) resulted in the formation of SSD-SLNs with a smooth surface as confirmed by scanning electron microscopy and controlled release (83%) for up to 24 h. The compatibility between the SSD and other formulation excipients was confirmed by Fourier transform infrared, differential scanning calorimetry, and powder X-ray diffraction studies. Developed SSD-SLNs in combination with DNase-I inhibited around 96.8% of biofilm of Pseudomonas aeruginosa as compared to SSD with DNase-I (82.9%). In line with our hypothesis, SSD-SLNs were found to be less toxic (cell viability 90.3 ± 3.8% at 100 µg/mL) in comparison with SSD (Cell viability 76.9 ± 4.2%) against human dermal fibroblast cell line. Eventually, the results of the in vivo wound healing study showed complete wound healing after 21 days' treatment with SSD-SLNs along with DNase-I, whereas marketed formulations SSD and SSD-LSNs showed incomplete healing after 21 days. Data in hand suggest that the combination of SSD-SLNs with DNase-I is an effective treatment strategy against the biofilm-associated wound infections and accelerates wound healing.


Assuntos
Biofilmes/efeitos dos fármacos , Desoxirribonuclease I/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/fisiologia , Sulfadiazina de Prata/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Desoxirribonuclease I/química , Composição de Medicamentos/métodos , Excipientes/química , Fibroblastos/metabolismo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Ratos , Ratos Wistar , Sulfadiazina de Prata/química , Pele/citologia , Resultado do Tratamento
9.
Mol Cell Biochem ; 462(1-2): 133-155, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31451998

RESUMO

Melatonin (N-acetyl-5-methoxy-tryptamine), which is generally considered as pleiotropic and multitasking molecule, secretes from pineal gland at night under normal light or dark conditions. Apart from circadian regulations, Melatonin also has antioxidant, anti-ageing, immunomodulation and anticancer properties. From the epidemiological research, it was postulated that Melatonin has significant apoptotic, angiogenic, oncostatic and anti-proliferative effects on various oncological cells. In this review, the underlying anticancer mechanisms of Melatonin such as stimulation of apoptosis, Melatonin receptors (MT1 and MT2) stimulation, paro-survival signal regulation, the hindering of angiogenesis, epigenetic alteration and metastasis have been discussed with recent findings. The Melatonin utilization as an adjuvant with chemotherapeutic drugs for the reinforcement of therapeutic effects was also discussed. This review precisely emphasizes the anticancer effect of Melatonin on various cancer cells. This review exemplifies the epidemiology and anticancer efficiency of Melatonin with prior attention to the mechanisms of actions.


Assuntos
Antineoplásicos/farmacologia , Melatonina/farmacologia , Animais , Antioxidantes/farmacologia , Ensaios Clínicos como Assunto , Humanos , Melatonina/biossíntese , Melatonina/química
10.
AAPS PharmSciTech ; 20(3): 131, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30815757

RESUMO

In the present study, stable chitosan nanoparticles (Ch-NPs) were developed using the ionotropic gelation method, where poly(sodium 4-styrenesulfonate) (PSS) was used as a cross-linking agent while polyglutamic acid (PGA) for functionalization to improve the oral uptake through calcium-sensing receptors and amino acid transporters present in intestinal epithelium. Formulation was optimized by the design of experiments (DoE) approach using a three-level central composite design and characterized for in vitro parameters such as morphology, particle size, polydispersity index (PDI), entrapment efficiency and zeta potential. Morphological analysis demonstrated the formation of spherical NPs with particle size, zeta potential, and entrapment efficiency in the range of 210 nm ± 2.8 nm, 18.1 mV ± 0.14 mV, and 85.9% ± 0.28%, respectively. The developed NPs exhibited sustained release at different pH conditions and almost threefold higher uptake in comparison with non-functionalized NPs in Caco-2 cell uptake studies. In vivo studies in diabetic animals demonstrated low levels of plasma glucose for almost 24 h. Pharmacological availability (PA) of insulin administered through Ch-PSS-PGA NPs (17.28 ± 0.9) was significantly higher as compared to that of insulin administered through control NPs, i.e., Ch-PGA NPs (10.9 ± 1.5) and Ch-PSS NPs (12.9 ± 1.8). Data on hand suggest the ability of the developed NPs in overcoming the poor stability and, thus, poor therapeutic efficacy following oral administration.


Assuntos
Quitosana/química , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Insulina/uso terapêutico , Ácido Poliglutâmico/química , Administração Oral , Animais , Glicemia/metabolismo , Células CACO-2 , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Absorção Intestinal , Mucosa Intestinal/metabolismo , Masculino , Nanopartículas , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
11.
Nanomedicine ; 14(5): 1629-1641, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684527

RESUMO

The present report deals with conjugation of dual drug; docetaxel (DTX) and gemcitabine (GEM) with linker poly-ethylene-glycol (PEG) to develop amphiphilic molecule having self-assembled property. The synthesized conjugate (DTX-PEG-GEM) demonstrated critical micelle concentration (CMC) in the range of 5-10 µg/ml which self-assembled to form NPs with size 124.2 ±â€¯5.7. Remarkably higher coumarin-6 (C-6) fluorescence signals observed in case of C-6 loaded NPs, suggested enhanced cellular uptake via clathrin mediated endocytosis. Developed NPs demonstrated 4.8-fold higher AUC(0-∞) value of GEM in comparison with Gemzar®. Tumor growth inhibition study demonstrated significant reduction in tumor volume and higher survival rate with NPs. Moreover, NPs demonstrated significantly lower hepato- and nephro-toxicity, evident from both histopathological sections and biochemical markers level estimation, and hemolytic toxicity. Data in hand suggest enhanced therapeutic efficacy and reduced toxicity of developed NPs over conventional drugs, resulting in efficient combinatorial chemotherapeutic-regimen and patient compliance, which is still an unmet task.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Polietilenoglicóis/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Docetaxel/administração & dosagem , Feminino , Humanos , Micelas , Nanopartículas/química , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
Mol Pharm ; 14(6): 1874-1882, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28447792

RESUMO

In the present article we investigate the feasibility of liquid crystalline nanoparticles (LCNPs) to improve the stability and therapeutic efficacy of insulin following oral administration. Compatibility studies of different formulation ingredients with insulin and extensive optimization of different process variables resulted into the formation of LCNPs with particle size of 245.50 ± 6.36 nm, PDI of 0.220 ± 0.042, and zeta potential of -18.30 ± 1.27 mV with an entrapment efficiency of 44.17 ± 1.47%. Mannitol (5% w/v) was identified as a suitable cryoprotectant to produce freeze-dried LCNPs without affecting their critical quality attributes. LCNPs demonstrated excellent stability in simulated biological fluids by simultaneously retaining the chemical and conformational stability of the insulin entrapped within the LCNPs. A sustained release of insulin was observed for up to 24 h in PBS (pH 7.4). Developed LCNPs demonstrated remarkably higher Caco-2 cell uptake in comparison with free insulin-FITC and more than double the cumulative hypoglycemia in comparison with subcutaneously administered insulin solution in diabetic rats. Data in hand suggest that the proposed formulation strategy can be exploited for improving the therapeutic efficacy of biomacromolecules like insulin.


Assuntos
Portadores de Fármacos/química , Glucose/administração & dosagem , Glucose/uso terapêutico , Insulina/administração & dosagem , Insulina/uso terapêutico , Cristais Líquidos/química , Nanopartículas/química , Administração Oral , Animais , Células CACO-2 , Diabetes Mellitus Experimental/tratamento farmacológico , Feminino , Humanos , Lecitinas/química , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Tensoativos/química
13.
Pharm Res ; 34(7): 1505-1516, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28466393

RESUMO

PURPOSE: The present study evaluates the effects of stearic acid conjugation with gelatin and, its pharmaceutical potential to formulate novel atorvastatin (AT) loaded nanoparticles. METHOD: AT loaded stearic acid modified gelatin nanoparticles (AT-MG NPs) were prepared via two-step desolvation method with extensive optimization of different process variables. Further, the developed nanoparticles where evaluated against in vitro Caco-2 cell model and in vivo bioavailability. RESULTS: Extensive optimization of nanoformulation resulted into the formation of AT-MG NPs with particle size 247.7 ± 10.9 nm, PDI 0.219 ± 0.07, and entrapment efficiency 58.7 ± 5.3%. Freeze dried nanoparticles were found to have spherical shape as determined by SEM and demonstrated excellent stability in simulated gastrointestinal conditions and during storage. Developed nanoparticles exhibited sustained release up to 24 h and remarkably higher Caco-2 cell uptake. Mechanistic studies further revealed the clathrin and caveolae mediated endocytosis as principle mechanism. In line with Caco-2 cell uptake observations, AT-MG NPs showed ∼4.84-fold increase in the AUC0-∞ values of AT in comparison with free AT following oral administration. CONCLUSION: Overall, the stearic acid conjugated gelatin NPs demonstrates a promising potential in improving the drug payload of BCS class II drugs and enhancing oral bioavailability.


Assuntos
Atorvastatina/metabolismo , Gelatina/química , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Nanopartículas/química , Ácidos Esteáricos/química , Administração Oral , Animais , Atorvastatina/química , Disponibilidade Biológica , Células CACO-2 , Portadores de Fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Liofilização , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Absorção Intestinal , Tamanho da Partícula , Ratos Sprague-Dawley
14.
Pharm Res ; 34(11): 2295-2311, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795274

RESUMO

PURPOSE: The present study reports a novel conjugate of gemcitabine (GEM) with bovine serum albumin (BSA) and thereof nanoparticles (GEM-BSA NPs) to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM. METHODS: The synthesized GEM-BSA conjugate was extensively characterized by NMR, FTIR, MALDI-TOF and elemental analysis. Conjugation mediated changes in structural conformation and physicochemical properties were analysed by fluorescence, Raman and CD spectroscopy, DSC and contact angle analysis. Further, BSA nanoparticles were developed from BSA-GEM conjugate and extensively evaluated against in-vitro pancreatic cancer cell lines to explore cellular uptake pathways and therapeutic efficacy. RESULTS: Various characterization techniques confirmed covalent conjugation of GEM with BSA. GEM-BSA conjugate was then transformed into NPs via high pressure homogenization technique with particle size 147.2 ± 7.3, PDI 0.16 ± 0.06 and ZP -19.2 ± 1.4. The morphological analysis by SEM and AFM revealed the formation of smooth surface spherical nanoparticles. Cellular uptake studies in MIA PaCa-2 (GEM sensitive) and PANC-1 (GEM resistant) pancreatic cell lines confirmed energy dependent clathrin internalization/endocytosis as a primary mechanism of NPs uptake. In-vitro cytotoxicity studies confirmed the hNTs independent transport of GEM in MIA PaCa-2 and PANC-1 cells. Moreover, DNA damage and annexin-V assay revealed significantly higher apoptosis level in case of cells treated with GEM-BSA NPs as compared to free GEM. CONCLUSIONS: GEM-BSA NPs were found to potentiate the therapeutic efficacy by altering physicochemical properties, improving cellular uptake and stability of GEM and thus demonstrated promising therapeutic potential over free drug. Graphical Abstract ᅟ.


Assuntos
Antineoplásicos/química , Desoxicitidina/análogos & derivados , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Soroalbumina Bovina/química , Animais , Antineoplásicos/farmacologia , Apoptose , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular , Desoxicitidina/química , Desoxicitidina/farmacologia , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Tamanho da Partícula , Propriedades de Superfície , Gencitabina
15.
Exp Mol Pathol ; 101(1): 12-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27235383

RESUMO

Celastrol (CEL), a plant-derived triterpenoid, is a known inhibitor of Hsp90 and NF-κB activation pathways and has recently been suggested to be of therapeutic importance in various cancers. However, the molecular mechanisms of celastrol-mediated effects in lung cancer are not systematically studied. Moreover, it suffers from poor bioavailability and off-site toxicity issues. This study aims to study the effect of celastrol loaded into exosomes against two non-small cell-lung carcinoma (NSCLC) cell lines and explore the molecular mechanisms to determine the proteins governing the cellular responses. We observed that celastrol inhibited the proliferation of A549 and H1299 NSCLC cells in a time- and concentration-dependent manner as indexed by MTT assay. Mechanistically, CEL pre-treatment of H1299 cells completely abrogated TNFα-induced NF-κB activation and upregulated the expression of ER-stress chaperones Grp 94, Grp78, and pPERK. These changes in ER-stress mediators were paralleled by an increase in apoptotic response as evidenced by higher annexin-V/PI positive cells evaluated by FACS and immunoblotting which showed upregulation of the ER stress specific pro-apoptotic transcription factor, GADD153/CHOP and alteration of Bax/Bcl2 levels. Exosomes loaded with CEL exhibited enhanced anti-tumor efficacy as compared to free CEL against lung cancer cell xenograft. CEL did not exhibit any gross or systemic toxicity in wild-type C57BL6 mice as determined by hematological and liver and kidney function test. Together, our data demonstrate the chemotherapeutic potential of CEL in lung cancer and that exosomal formulation enhances its efficacy and reduces dose related toxicity.


Assuntos
Exossomos/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Triterpenos/uso terapêutico , Células A549 , Animais , Apoptose/efeitos dos fármacos , Bovinos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Neoplasias Pulmonares/patologia , Camundongos Nus , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Pharm ; 12(11): 3871-84, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26375023

RESUMO

In spite of extensive research over the decades, breast cancer treatment is still a major challenge due to nonspecific distribution of the chemotherapeutics. This void can be filled by restricting the distribution of chemotherapeutics toward the cancerous cells. In the present report estradiol (E2) functionalization of docetaxel (DTX) loaded PLGA nanoparticles was supposed to have specific distribution of DTX to cancerous cells simultaneously avoiding the nonspecific distribution toward the normal cells. In line, E2-PEG-PLGA conjugate was synthesized and characterized by FTIR and NMR spectroscopy. Extensive optimization of different process variables resulted in the formation of spherical E2-PEG-PLGA NPs in the size range of 228.5 ± 11.8 nm and entrapment efficiency of 94.25 ± 2.49. Trehalose (5% w/v) resulted in the formation of a fluffy, easy to redisperse freeze-dried cake of nanoparticles. PXRD analysis revealed the amorphous nature of DTX encapsulated within the nanoparticles. X-ray photoelectron spectroscopy confirmed the presence of E2 over the surface of nanoparticles. In line with our hypothesis, cellular uptake studies on ER positive MCF-7 cells revealed relatively higher uptake and efficient localization into the nuclear region of E2-PEG-PLGA NPs in comparison with plain counterparts, while in the case of ER negative HeLa cells E2-PEG-PLGA NPs showed no difference in fluorescence pattern as compared to MCF-7 cells incubated with unmodified nanoformulation, indicating nonspecific delivery of DTX. Moreover, MTT assay revealed relatively higher cytotoxicity of E2-PEG-PLGA NPs in comparison with free DTX. Furthermore, in vivo pharmacokinetic studies revealed 9.36- and 4.79-fold enhancement in circulation half-life and AUC(0-∞), respectively, of E2-PEG-PLGA NPs in comparison with Taxotere. In vivo antitumor efficacy in DMBA induced rat model demonstrated significant reduction in tumor volume in comparison with the plain counterpart (PLGA-NPs) and a marketed formulation, Taxotere. Moreover, the safety of the estradiol functionalized PLGA NPs was confirmed by hepato- and nephrotoxicity studies.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/química , Estradiol/química , Nanopartículas/química , Polímeros/química , Taxoides/farmacologia , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Docetaxel , Feminino , Células HeLa , Humanos , Camundongos , Espectroscopia Fotoeletrônica , Poliésteres/química , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Taxoides/química , Células Tumorais Cultivadas
17.
Pharm Res ; 32(1): 122-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25030184

RESUMO

PURPOSE: The present report embarks on rational designing of stable and functionalized chitosan nanoparticles for oral mucosal immunization. METHODS: Stable glucomannosylated sCh-GM-NPs were prepared by tandem cross linking method followed by lyophilization. The in vitro stability of antigen and formulation, cellular uptake and immunostimulatory response were assessed by suitable experimental protocol. RESULTS: Stability testing ensured the chemical and conformation permanency of encapsulated TT as well as robustness of sCh-GM-NPs in simulated biological media. The antigen release from sCh-GM-NPs followed initial burst followed by controlled Weibull's type of release profile. The higher intracellular uptake of sCh-GM-NPs in Raw 264.7 and Caco-2 was concentration and time dependent which mainly attributed to Clathrin and receptor mediated endocytosis via mannose and glucose receptor. The in vivo evaluation in animals revealed that sCh-GM-NPs posed significantly (p < 0.001) higher humoral, mucosal and cellular immune response than other counterparts. More importantly, commercial TT vaccine administered through oral or intramuscular route was unable to elicit all type of immune response. CONCLUSION: The sCh-GM-NPs could be considered as promising vaccine adjuvant for oral tetanus immunization. Additionally, this technology expected to benefit the design and development of stable peroral formulation for administration of protein, peptides and variety of other antigens.


Assuntos
Adjuvantes Imunológicos/química , Quitosana/química , Imunidade nas Mucosas/imunologia , Mananas/química , Mucosa Bucal/imunologia , Nanopartículas/química , Toxoide Tetânico/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Toxoide Tetânico/química , Toxoide Tetânico/imunologia
18.
Bioconjug Chem ; 25(3): 501-9, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24506698

RESUMO

The present study reports the synthesis, characterization, and biological evaluation of a novel macromolecular bipill, synthesized by appending two different anticancer agents, viz., gemcitabine (GEM) and methotrexate (MTX), to the distal ends of a long-circulating poly(ethylene glycol) (PEG) spacer. Covalent conjugation of GEM and MTX via PEG linker not only transformed the solubility profiles of constituent drug molecules, but significantly improved their stability in the presence of plasma. In vitro cytotoxicity studies confirmed that GEM-PEG-MTX exerts higher cytotoxicity (IC50 0.181 µM at 24 h) in human breast adenocarcinoma MCF-7 cell lines, when compared to free drug congeners, i.e., free GEM (IC50 0.294 µM at 24 h) and free MTX (IC50 0.591 µM at 24 h). Tumor growth inhibition studies in chemically induced breast cancer bearing rats established the superiority of GEM-PEG-MTX conjugate over all other pharmaceutical preparations including free drugs, physical mixture of GEM and MTX, and PEGylated GEM/MTX. Toxicity studies in tumor bearing rats as well as healthy mice corroborated that dual drug conjugation is an effective means to synergize the therapeutic indices of potential drug candidates while alleviating drug-associated side effects.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Neoplasias Mamárias Experimentais/tratamento farmacológico , Metotrexato/farmacologia , Animais , Antimetabólitos Antineoplásicos/síntese química , Antimetabólitos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/síntese química , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Células MCF-7 , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Neoplasias Mamárias Experimentais/patologia , Metotrexato/síntese química , Metotrexato/química , Camundongos , Estrutura Molecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Relação Estrutura-Atividade , Gencitabina
19.
Biomacromolecules ; 15(1): 350-60, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24283460

RESUMO

The present study reports the folic acid (FA) functionalized insulin loaded stable liposomes with improved bioavailability following oral administration. Liposomes were stabilized by alternating coating of negatively charged poly(acrylic acid) (PAA) and positively charged poly(allyl amine) hydrochloride (PAH) over liposomes. Furthermore, folic acid was appended as targeting ligand by synthesizing folic acid-poly(allyl amine) hydrochloride conjugate. The insulin entrapped within the freeze-dried formulation was found stable both chemically as well as conformationally and developed formulation exhibited excellent stability in simulated biological fluids. Caco-2 cell and ex vivo intestinal uptake studies revealed higher uptake of folic acid functionalized layersomes in comparison with their plain counterparts. In vivo pharmacodynamic and pharmacokinetic studies further revealed almost double hypoglycemia and approximately 20% relative bioavailability in comparison with subcutaneously administered standard insulin solution. Overall the proposed strategy is expected to contribute significantly in the field of designing ligand-anchored, polyelectrolyte-based stable systems in drug delivery.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/administração & dosagem , Insulina/administração & dosagem , Polímeros/administração & dosagem , Administração Oral , Animais , Células CACO-2 , Diabetes Mellitus Experimental/sangue , Estabilidade de Medicamentos , Ácido Fólico/química , Humanos , Insulina/química , Lipossomos , Masculino , Polímeros/química , Ratos , Ratos Sprague-Dawley
20.
Nanomedicine ; 10(2): 431-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24036099

RESUMO

The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. FROM THE CLINICAL EDITOR: This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization.


Assuntos
Lipossomos/química , Toxoide Tetânico/imunologia , Administração Oral , Adsorção , Animais , Linhagem Celular , Portadores de Fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Macrófagos/metabolismo , Masculino , Mananas/química , Manose/química , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Bucal/efeitos dos fármacos , Nanomedicina , Fosfatidiletanolaminas/química , Polímeros/química , Conformação Proteica , Soroalbumina Bovina/química , Propriedades de Superfície , Toxoide Tetânico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA