Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 591(7848): 142-146, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33473217

RESUMO

Compartmentalization of cellular material in droplet-like structures is a hallmark of liquid-liquid phase separation1,2, but the mechanisms of droplet removal are poorly understood. Evidence suggests that droplets can be degraded by autophagy3,4, a highly conserved degradation system in which membrane sheets bend to isolate portions of the cytoplasm within double-membrane autophagosomes5-7. Here we examine how autophagosomes sequester droplets that contain the protein p62 (also known as SQSTM1) in living cells, and demonstrate that double-membrane, autophagosome-like vesicles form at the surface of protein-free droplets in vitro through partial wetting. A minimal physical model shows that droplet surface tension supports the formation of membrane sheets. The model also predicts that bending sheets either divide droplets for piecemeal sequestration or sequester entire droplets. We find that autophagosomal sequestration is robust to variations in the droplet-sheet adhesion strength. However, the two sides of partially wetted sheets are exposed to different environments, which can determine the bending direction of autophagosomal sheets. Our discovery of this interplay between the material properties of droplets and membrane sheets enables us to elucidate the mechanisms that underpin droplet autophagy, or 'fluidophagy'. Furthermore, we uncover a switching mechanism that allows droplets to act as liquid assembly platforms for cytosol-degrading autophagosomes8 or as specific autophagy substrates9-11. We propose that droplet-mediated autophagy represents a previously undescribed class of processes that are driven by elastocapillarity, highlighting the importance of wetting in cytosolic organization.


Assuntos
Autofagossomos/metabolismo , Autofagia , Compartimento Celular , Citosol/metabolismo , Molhabilidade , Adesividade , Autofagossomos/química , Linhagem Celular , Citosol/química , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteína Sequestossoma-1/metabolismo , Tensão Superficial
2.
Proc Natl Acad Sci U S A ; 119(24): e2122269119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35679341

RESUMO

A common feature of biological self-organization is how active agents communicate with each other or their environment via chemical signaling. Such communications, mediated by self-generated chemical gradients, have consequences for both individual motility strategies and collective migration patterns. Here, in a purely physicochemical system, we use self-propelling droplets as a model for chemically active particles that modify their environment by leaving chemical footprints, which act as chemorepulsive signals to other droplets. We analyze this communication mechanism quantitatively both on the scale of individual agent-trail collisions as well as on the collective scale where droplets actively remodel their environment while adapting their dynamics to that evolving chemical landscape. We show in experiment and simulation how these interactions cause a transient dynamical arrest in active emulsions where swimmers are caged between each other's trails of secreted chemicals. Our findings provide insight into the collective dynamics of chemically active particles and yield principles for predicting how negative autochemotaxis shapes their navigation strategy.


Assuntos
Quimiotaxia , Simulação por Computador , Emulsões
3.
Small ; 19(36): e2300817, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37165719

RESUMO

Due to the intrinsically complex non-equilibrium behavior of the constituents of active matter systems, a comprehensive understanding of their collective properties is a challenge that requires systematic bottom-up characterization of the individual components and their interactions. For self-propelled particles, intrinsic complexity stems from the fact that the polar nature of the colloids necessitates that the interactions depend on positions and orientations of the particles, leading to a 2d - 1 dimensional configuration space for each particle, in d dimensions. Moreover, the interactions between such non-equilibrium colloids are generically non-reciprocal, which makes the characterization even more complex. Therefore, derivation of generic rules that enable us to predict the outcomes of individual encounters as well as the ensuing collective behavior will be an important step forward. While significant advances have been made on the theoretical front, such systematic experimental characterizations using simple artificial systems with measurable parameters are scarce. Here, two different contrasting types of colloidal microswimmers are studied, which move in opposite directions and show distinctly different interactions. To facilitate the extraction of parameters, an experimental platform is introduced in which these parameters are confined on a 1D track. Furthermore, a theoretical model for interparticle interactions near a substrate is developed, including both phoretic and hydrodynamic effects, which reproduces their behavior. For subsequent validation, the degrees of freedom are increased to 2D motion and resulting trajectories are predicted, finding remarkable agreement. These results may prove useful in characterizing the overall alignment behavior of interacting self-propelling active swimmer and may find direct applications in guiding the design of active-matter systems involving phoretic and hydrodynamic interactions.

4.
Phys Rev Lett ; 131(12): 128301, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802958

RESUMO

Mixtures of particles that interact through phoretic effects are known to aggregate if they belong to species that exhibit attractive self-interactions. We study self-organization in a model metabolic cycle composed of three species of catalytically active particles that are chemotactic toward the chemicals that define their connectivity network. We find that the self-organization can be controlled by the network properties, as exemplified by a case where a collapse instability is achieved by design for self-repelling species. Our findings highlight a possibility for controlling the intricate functions of metabolic networks by taking advantage of the physics of phoretic active matter.

5.
Phys Rev Lett ; 131(14): 148301, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862639

RESUMO

We study a minimal model involving two species of particles interacting via quorum-sensing rules. Combining simulations of the microscopic model and linear stability analysis of the associated coarse-grained field theory, we identify a mechanism for dynamical pattern formation that does not rely on the standard route of intraspecies effective attractive interactions. Instead, our results reveal a highly dynamical phase of chasing bands induced only by the combined effects of self-propulsion and nonreciprocity in the interspecies couplings. Turning on self-attraction, we find that the system may phase separate into a macroscopic domain of such chaotic chasing bands coexisting with a dilute gas. We show that the chaotic dynamics of bands at the interfaces of this phase-separated phase results in anomalously slow coarsening.

6.
Proc Natl Acad Sci U S A ; 117(22): 11894-11900, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414931

RESUMO

Many functional units in biology, such as enzymes or molecular motors, are composed of several subunits that can reversibly assemble and disassemble. This includes oligomeric proteins composed of several smaller monomers, as well as protein complexes assembled from a few proteins. By studying the generic spatial transport properties of such proteins, we investigate here whether their ability to reversibly associate and dissociate may confer on them a functional advantage with respect to nondissociating proteins. In uniform environments with position-independent association-dissociation, we find that enhanced diffusion in the monomeric state coupled to reassociation into the functional oligomeric form leads to enhanced reactivity with localized targets. In nonuniform environments with position-dependent association-dissociation, caused by, for example, spatial gradients of an inhibiting chemical, we find that dissociating proteins generically tend to accumulate in regions where they are most stable, a process that we term "stabilitaxis."


Assuntos
Transtornos Dissociativos/metabolismo , Complexos Multiproteicos/química , Proteínas , Microambiente Celular , Difusão , Modelos Teóricos , Complexos Multiproteicos/metabolismo , Polimerização , Estabilidade Proteica , Transporte Proteico , Proteínas/química , Proteínas/metabolismo
7.
J Am Chem Soc ; 144(30): 13441-13445, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35919985

RESUMO

In their Comment (DOI: 10.1021/jacs.2c02965) on two related publications by our group (J. Am. Chem. Soc. 2022, 144, 1380-1388; DOI: 10.1021/jacs.1c11754) and another (J. Am. Chem. Soc. 2021, 143, 20884-20890; DOI: 10.1021/jacs.1c09455), Huang and Granick refer to the diffusion NMR measurements of molecules during a copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. Here we respond to their comments and maintain that no measurable diffusion enhancement was observed during the reaction. We expand on the physical arguments presented in our original JACS Article regarding the appropriate reference state for the diffusion coefficient and present new data showing that the use of other reference states, as suggested by Huang and Granick, will still support our conclusion that the two reactants and one product of the CuAAC reaction do not exhibit boosted mobility during the reaction.


Assuntos
Azidas , Química Click , Alcinos/química , Azidas/química , Catálise , Cobre/química , Reação de Cicloadição
8.
J Am Chem Soc ; 144(3): 1380-1388, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35078321

RESUMO

Micrometer-sized objects are widely known to exhibit chemically driven motility in systems away from equilibrium. Experimental observation of reaction-induced motility or enhancement in diffusivity at the much shorter length scale of small molecules is, however, still a matter of debate. Here, we investigate the molecular diffusivity of reactants, catalyst, and product of a model reaction, the copper-catalyzed azide-alkyne cycloaddition click reaction, and develop new NMR diffusion approaches that allow the probing of reaction-induced diffusion enhancement in nanosized molecular systems with higher accuracy than the state of the art. Following two different approaches that enable the accounting of time-dependent concentration changes during NMR experiments, we closely monitored the diffusion coefficient of reaction components during the reaction. The reaction components showed distinct changes in the diffusivity: while the two reactants underwent a time-dependent decrease in their diffusivity, the diffusion coefficient of the product gradually increased and the catalyst showed only slight diffusion enhancement within the range expected for reaction-induced sample heating. The decrease in diffusion coefficient of the alkyne, one of the two reactants of click reaction, was not reproduced during its copper coordination when the second reactant, azide, was absent. Our results do not support the catalysis-induced diffusion enhancement of the components of the click reaction and, instead, point to the role of a relatively large intermediate species within the reaction cycle with diffusivity lower than that of both the reactants and product molecule.

9.
Phys Rev Lett ; 129(15): 158101, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269959

RESUMO

We present a thermodynamically consistent model describing the dynamics of a multicomponent mixture where one enzyme component catalyzes a reaction between other components. We find that the catalytic activity alone can induce phase separation for sufficiently active systems and large enzymes, without any equilibrium interactions between components. In the limit of fast reaction rates, binodal lines can be calculated using a mapping to an effective free energy. We also explain how this catalysis-induced phase separation can act to autoregulate the enzymatic activity, which points at the biological relevance of this phenomenon.


Assuntos
Catálise , Homeostase
10.
Phys Rev Lett ; 127(20): 208103, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860057

RESUMO

We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other, e.g., through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stochastic steps along a biased chemical free energy landscape. We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the coupling can lead to a significant enhancement in their overall catalytic rate. Both effects can be understood as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling. Our findings suggest that, despite their molecular scale, enzymes can be cooperative and improve their performance in metabolic clusters.


Assuntos
Biocatálise , Enzimas/química , Enzimas/metabolismo , Processos Estocásticos
11.
Soft Matter ; 17(2): 298-307, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32119018

RESUMO

Biological cells are capable of undergoing extensive shape transformations thanks to the existence of membrane area reservoirs from which they can pull out membrane when required. A particularly relevant example of such membrane remodelling is given by endocytic and phagocytic processes, during which the cell membrane engulfs nano- and micrometer sized particles. Recently, it was shown that cell-like membrane reservoirs can be mimicked in giant vesicles with nanotubes stabilized by strong bilayer asymmetry, as quantified by the membrane's spontaneous curvature. Here, we theoretically investigate particle engulfment by such strongly-asymmetric membranes. We find that, depending on the sign of the spontaneous curvature, the engulfment transition may be continuous or discontinuous. Moreover, we find that, in the case of particle engulfment, the presence of asymmetry-stabilized reservoirs is not well captured by the constant-tension model typically used to describe cell-membrane deformations. This highlights the need for a better understanding of the nature of cellular membrane reservoirs, in order to accurately describe membrane remodelling processes.


Assuntos
Nanotubos , Membrana Celular , Membranas
12.
Eur Phys J E Soft Matter ; 44(9): 113, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478002

RESUMO

Biomolecular condensates in cells are often rich in catalytically active enzymes. This is particularly true in the case of the large enzymatic complexes known as metabolons, which contain different enzymes that participate in the same catalytic pathway. One possible explanation for this self-organization is the combination of the catalytic activity of the enzymes and a chemotactic response to gradients of their substrate, which leads to a substrate-mediated effective interaction between enzymes. These interactions constitute a purely non-equilibrium effect and show exotic features such as non-reciprocity. Here, we analytically study a model describing the phase separation of a mixture of such catalytically active particles. We show that a Michaelis-Menten-like dependence of the particles' activities manifests itself as a screening of the interactions, and that a mixture of two differently sized active species can exhibit phase separation with transient oscillations. We also derive a rich stability phase diagram for a mixture of two species with both concentration-dependent activity and size dispersity. This work highlights the variety of possible phase separation behaviours in mixtures of chemically active particles, which provides an alternative pathway to the passive interactions more commonly associated with phase separation in cells. Our results highlight non-equilibrium organizing principles that can be important for biologically relevant liquid-liquid phase separation.

13.
Phys Rev Lett ; 125(19): 198102, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216584

RESUMO

Lipid membranes, the barrier defining living cells and many of their subcompartments, bind to a wide variety of nano- and micrometer sized objects. In the presence of strong adhesive forces, membranes can strongly deform and wrap the particles, an essential step in crossing the membrane for a variety of healthy and disease-related processes. A large body of theoretical and numerical work has focused on identifying the physical properties that underly wrapping. Using a model system of micron-sized colloidal particles and giant unilamellar lipid vesicles with tunable adhesive forces, we measure a wrapping phase diagram and make quantitative comparisons to theoretical models. Our data are consistent with a model of membrane-particle interactions accounting for the adhesive energy per unit area, membrane bending rigidity, particle size, and vesicle radius.

14.
Acc Chem Res ; 51(10): 2365-2372, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30240187

RESUMO

Enzymes have been recently proposed to have mechanical activity associated with their chemical activity. In a number of recent studies, it has been reported that enzymes undergo enhanced diffusion in the presence of their corresponding substrate when this substrate is uniformly distributed in solution. Moreover, if the concentration of the substrate is nonuniform, enzymes and other small molecules have been reported to show chemotaxis (biased stochastic movement in the direction of the substrate gradient), typically toward higher concentrations of this substrate, with a few exceptions. The underlying physical mechanisms responsible for enhanced diffusion and chemotaxis at the nanoscale, however, are still not well understood. Understanding these processes is important both for fundamental biological research, for example, in the context of spatial organization of enzymes in metabolic pathways (metabolon formation), as well as for engineering applications, such as in the design of new vehicles for targeted drug delivery. In this Account, we will review the available experimental observations of both enhanced diffusion and chemotaxis, and we will discuss critically the different theories that have been proposed to explain the two. We first focus on enhanced diffusion, beginning with an overview of the experimental results. We then discuss the two main types of mechanisms that have been proposed, namely, active mechanisms relying on the catalytic step of the enzymatic reaction and equilibrium mechanisms, which consider the reversible binding and unbinding of the substrate to the enzyme. We put particular emphasis on an equilibrium model recently introduced by us, which describes how the diffusion of dumbbell-like modular enzymes can be enhanced in the presence of substrate thanks to a binding-induced reduction of the internal fluctuations of the enzyme. We then turn to chemotaxis, beginning with an overview of the experimental evidence for the chemotaxis of enzymes and small molecules, followed by a description of a number of shortcomings and pitfalls in the thermodynamic and phenomenological models for chemotaxis introduced in those and other works in the literature. We then discuss a microscopic model for chemotaxis including both noncontact interactions and specific binding between enzyme and substrate recently developed by us, which overcomes many of these shortcomings and is consistent with the experimental observations of chemotaxis. Finally, we show that the results of this model may be used to engineer chemically active macromolecules that are directed in space via patterning of the concentrations of their substrates.


Assuntos
Quimiotaxia , Nanotecnologia , Biocatálise , Difusão , Enzimas/metabolismo , Cinética , Modelos Biológicos , Termodinâmica
15.
Phys Rev Lett ; 123(1): 018101, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386420

RESUMO

We theoretically study mixtures of chemically interacting particles, which produce or consume a chemical to which they are attracted or repelled, in the most general case of many coexisting species. We find a new class of active phase separation phenomena in which the nonequilibrium chemical interactions between particles, which break action-reaction symmetry, can lead to separation into phases with distinct density and stoichiometry. Because of the generic nature of our minimal model, our results shed light on the underlying fundamental principles behind nonequilibrium self-organization of cells and bacteria, catalytic enzymes, or phoretic colloids.

16.
PLoS Comput Biol ; 14(8): e1006422, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30130367

RESUMO

ESCRT proteins participate in the fission step of exocytic membrane budding, by assisting in the closure and scission of the membrane neck that connects the nascent bud to the plasma membrane. However, the precise mechanism by which the proteins achieve this so-called reverse-topology membrane scission remains to be elucidated. One mechanism is described by the dome model, which postulates that ESCRT-III proteins assemble in the shape of a hemispherical dome at the location of the neck, and guide the closure of this neck via membrane-protein adhesion. A different mechanism is described by the flattening cone model, in which the ESCRT-III complex first assembles at the neck in the shape of a cone, which then flattens leading to neck closure. Here, we use the theoretical framework of curvature elasticity and membrane-protein adhesion to quantitatively describe and compare both mechanisms. This comparison shows that the minimal adhesive strength of the membrane-protein interactions required for scission is much lower for cones than for domes, and that the geometric constraints on the shape of the assembly required to induce scission are more stringent for domes than for cones. Finally, we compute for the first time the adhesion-induced constriction forces exerted by the ESCRT assemblies onto the membrane necks. These forces are higher for cones and of the order of 100 pN.


Assuntos
Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Membrana Celular/metabolismo , Simulação por Computador/estatística & dados numéricos , Citocinese , Endossomos/metabolismo , Humanos , Membranas Intracelulares/metabolismo
17.
Nano Lett ; 18(4): 2711-2717, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29552886

RESUMO

Chemotaxis of enzymes in response to gradients in the concentration of their substrate has been widely reported in recent experiments, but a basic understanding of the process is still lacking. Here, we develop a microscopic theory for chemotaxis that is valid for enzymes and other small molecules. Our theory includes both nonspecific interactions between enzyme and substrate as well as complex formation through specific binding between the enzyme and the substrate. We find that two distinct mechanisms contribute to enzyme chemotaxis: a diffusiophoretic mechanism due to the nonspecific interactions and a new type of mechanism due to binding-induced changes in the diffusion coefficient of the enzyme. The latter chemotactic mechanism points toward lower substrate concentration if the substrate enhances enzyme diffusion and toward higher substrate concentration if the substrate inhibits enzyme diffusion. For a typical enzyme, attractive phoresis and binding-induced enhanced diffusion will compete against each other. We find that phoresis dominates above a critical substrate concentration, whereas binding-induced enhanced diffusion dominates for low substrate concentration. Our results resolve an apparent contradiction regarding the direction of urease chemotaxis observed in experiments and, in general, clarify the relation between the enhanced diffusion and the chemotaxis of enzymes. Finally, we show that the competition between the two distinct chemotactic mechanisms may be used to engineer nanomachines that move toward or away from regions with a specific substrate concentration.


Assuntos
Quimiotaxia , Enzimas/metabolismo , Modelos Biológicos , Algoritmos , Animais , Difusão , Humanos , Ligação Proteica , Especificidade por Substrato
18.
Biophys J ; 115(7): 1292-1306, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30177442

RESUMO

We examine the adhesion of biomembranes to substrates topographically patterned with concave nanopits and identify several universal features in the adhesion process. We find three distinct states, depending on whether the membrane remains flat above the nanopit, partially enters it, or completely adheres to it, and derive analytical conditions for the stability of these states valid for a very general class of nanopit shapes. Surprisingly, completely adhered states are always (meta)stable. We also show that the presence of many nanopits can increase or decrease the effective adhesiveness of a substrate, depending on the tension of the membrane and the strength of the membrane-substrate attraction. Our results have implications regarding several experimental methods, which involve the formation of supported lipid bilayers on substrates patterned with nanopits, as well as observations of decreased spreading of cells and migration of cells toward regions of lower nanopit density on topographically patterned substrates. Furthermore, our predictions can also be directly tested in experiments exploring the adhesion of micropipette-aspirated giant vesicles to such substrates.


Assuntos
Membrana Celular/química , Nanotecnologia , Adesividade , Bicamadas Lipídicas/química
20.
Soft Matter ; 13(11): 2155-2173, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28229148

RESUMO

Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states. Here, we go beyond stability analysis and develop an analytical theory to leading order in the ratio of particle-to-vesicle size. This theory allows us to determine the local and global energy landscapes of uniform nanoparticles that are attracted towards membranes and vesicles. While the local energy landscape depends only on the local curvature of the vesicle membrane and not on the overall membrane shape, the global energy landscape describes the variation of the equilibrium state of the particle as it probes different points along the membrane surface. In particular, we find that the binding energy of a partially engulfed particle depends on the 'unperturbed' local curvature of the membrane in the absence of the particle. This curvature dependence leads to local forces that pull the partially engulfed particles towards membrane segments with lower and higher mean curvature if the particles originate from the exterior and interior solution, respectively, corresponding to endo- and exocytosis. Thus, for partial engulfment, endocytic particles undergo biased diffusion towards the membrane segments with the lowest membrane curvature, whereas exocytic particles move towards segments with the highest curvature. The curvature-induced forces are also effective for Janus particles with one adhesive and one non-adhesive surface domain. In fact, Janus particles with a strongly adhesive surface domain are always partially engulfed which implies that they provide convenient probes for experimental studies of the curvature-induced forces that arise for complex-shaped membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA