Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Inorg Chem ; 62(6): 2793-2805, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36705986

RESUMO

Emissive compounds with long emission lifetimes (µs to ms) in the visible region are of interest for a range of applications, from oxygen sensing to cellular imaging. The emission behavior of Ir(ppy)2(acac) complexes (where ppy is the 2-phenylpyridyl chelate and acac is the acetylacetonate chelate) with an oligo(para-phenyleneethynylene) (OPE3) motif containing three para-rings and two ethynyl bridges attached to acac or ppy is examined here due to the accessibility of the long-lived OPE3 triplet states. Nine Ir(ppy)2(acac) complexes with OPE3 units are synthesized where the OPE3 motif is at the acac moiety (aOPE3), incorporated in the ppy chelate (pOPE3) or attached to ppy via a durylene link (dOPE3). The aOPE3 and dOPE3 complexes contain OPE3 units that are decoupled from the Ir(ppy)2(acac) core by adopting perpendicular ring-ring orientations, whereas the pOPE3 complexes have OPE3 integrated into the ppy ligand to maximize electronic coupling with the Ir(ppy)2(acac) core. While the conjugated pOPE3 complexes show emission lifetimes of 0.69-32.8 µs similar to the lifetimes of 1.00-23.1 µs for the non-OPE3 Ir(ppy)2(acac) complexes synthesized here, the decoupled aOPE3 and dOPE3 complexes reveal long emission lifetimes of 50-625 µs. The long lifetimes found in aOPE3 and dOPE3 complexes are due to intramolecular reversible electronic energy transfer (REET) where the long-lived triplet-state metal to ligand charge transfer (3MLCT) states exchange via REET with the even longer-lived triplet-state localized OPE3 states. The proposed REET process is supported by changes observed in excitation wavelength-dependent and time-dependent emission spectra from aOPE3 and dOPE3 complexes, whereas emission spectra from pOPE3 complexes remain independent of the excitation wavelength and time due to the well-established 3MLCT states of many Ir(ppy)2(acac) complexes. The long lifetimes, visible emission maxima (524-526 nm), and photoluminescent quantum yields of 0.44-0.60 for the dOPE3 complexes indicate the possibility of utilizing such compounds in oxygen-sensing and cellular imaging applications.

2.
Soft Matter ; 16(28): 6514-6522, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32597453

RESUMO

Here we present the preparation and characterization of new biocompatible materials for drug encapsulation. These new gels are based on positively charged [1+1] 1H-pyrazole-based azamacrocycles which minimise the electrostatic repulsions between the negatively charged GMP molecules. Rheological measurements confirm the electroneutral hydrogel structure as the most stable for all the GMP-polyamine systems. Nuclear magnetic resonance (NMR) was employed to investigate the kinetics of the hydrogel formation and cryo-scanning electron microscopy (cryo-SEM) was used to obtain information about the hydrogel morphology, which exhibited a non-homogeneous structure with a high degree of cross-linking. It is possible to introduce isoniazid, which is the most employed antibiotic for tuberculosis treatment, into the hydrogels without disrupting the hydrogel structure at appropriate concentrations for oral administration.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Microscopia Eletrônica de Varredura , Poliaminas , Reologia
3.
Magn Reson Chem ; 58(1): 51-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291477

RESUMO

PSYCOSY is an f1 broadband homonuclear decoupled version of the COSY nuclear magnetic resonance pulse sequence. Here, we investigate by a combination of experimental measurements, spatially distributed spin dynamics simulations, and analytical predictions the coherence evolution delay necessary in PSYCOSY experiments to ensure intensity discrimination in favour of the correlations typically arising from short range (n J, n ≤ 3) 1 H-1 H couplings and show that, in general, a coherence evolution delay of around 35 ms is optimum.

4.
J Am Chem Soc ; 141(8): 3430-3434, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30739443

RESUMO

Peptoids are peptidomimetics of interest in the fields of drug development and biomaterials. However, obtaining stable secondary structures is challenging, and designing these requires effective control of the peptoid tertiary amide cis/trans equilibrium. Herein, we report new fluorine-containing aromatic monomers that can control peptoid conformation. Specifically, we demonstrate that a fluoro-pyridine group can be used to circumvent the need for monomer chirality to control the cis/trans equilibrium. We also show that incorporation of a trifluoro-methyl group ( NCF3Rpe) rather than a methyl group ( NRpe) at the α-carbon of a monomer gives rise to a 5-fold increase in cis-isomer preference.


Assuntos
Flúor/química , Hidrocarbonetos Aromáticos/química , Peptídeos/química , Simulação de Dinâmica Molecular , Estrutura Molecular
5.
J Org Chem ; 84(7): 3801-3816, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912439

RESUMO

Thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) are known to occur in organic D-A-D and D-A systems where the donor group contains the phenothiazine unit and the acceptor is dibenzothiophene- S, S-dioxide. This study reports the synthesis and characterization of one new D-A and four new D-A-D systems with methoxy groups on the phenothiazine to examine their effect on emission properties in the zeonex matrix. X-ray analysis and highly specialized NMR techniques were used to characterize asymmetric methoxy-substituted derivative 3b, which is chiral at N because of an extremely high flipping barrier at the phenothiazine N atom. Based on hybrid-density functional theory computations, the methoxy substituents tune the relative stabilities of the axial conformers with respect to equatorial conformers of the phenothiazine units, depending on their substitution position. This conformational effect significantly influences both TADF and RTP contributions compared to the parent D-A-D system. It is also demonstrated that the equatorial forms of D-A-D and D-A systems in zeonex exhibit TADF. Additionally, the methoxy groups promote luminescence in D-A-D systems where only axial conformers exist. This work reveals further design opportunities for more efficient TADF and RTP molecules.

6.
Analyst ; 144(24): 7270-7277, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31693024

RESUMO

Analysis of metabolites in biofluids using nuclear magnetic resonance often requires the suppression of obscuring signals arising from water and macromolecules. This paper analyses the limitations of the pulse sequence most commonly used to achieve such suppression (presat-CPMG) and proposes new pulse sequences that do not share those limitations. The utility of these improved pulse sequences is demonstrated in a metabolomic study of multiple sclerosis (MS) patients.


Assuntos
Análise Química do Sangue/métodos , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Água/química , Humanos , Metaboloma , Metabolômica/métodos , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismo
7.
Chemistry ; 24(60): 16170-16175, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30160336

RESUMO

The degree of aggregation of neutral, 9-coordinate rare earth coordination complexes has been shown to affect their ligand field, as revealed by diffusion-ordered NMR spectroscopy (DOSY-NMR) measurements on Y(III) complexes, paramagnetic NMR analyses of Yb and Tb analogues and emission spectral studies with the EuIII systems. In non-polar media a lipophilic tris-isopropyl complex, [Ln.L2 ] tends to aggregate in chloroform and dichloromethane giving rise to oligomers, whereas in acetic and trifluoroacetic acid the more polar parent complex, [Ln.L1 ], also aggregates, profoundly affecting the pseudocontact shift and the form of the Eu emission spectrum. Such behaviour has important implications in the design of responsive spectral probes.

8.
Chemistry ; 24(28): 7137-7148, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29570870

RESUMO

EDTA is widely used as an inhibitor of bacterial growth, affecting the uptake and control of metal ions by microorganisms. We describe the synthesis and characterisation of two symmetrical bis-amide derivatives of EDTA, featuring glycyl or pyridyl substituents: AmGly2 and AmPy2 . Metal ion affinities (logK) have been evaluated for a range of metals (Mg2+ , Ca2+ , Fe3+ , Mn2+ , Zn2+ ), revealing less avid binding compared to EDTA. The solid-state structures of AmGly2 and of its Mg2+ complex have been determined crystallographically. The latter shows an unusual 7-coordinate, capped octahedral Mg2+ centre. The antibacterial activities of the two ligands and of EDTA have been evaluated against a range of health-relevant bacterial species, three Gram negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and a Gram positive (Staphylococcus aureus). The AmPy2 ligand is the only one that displays a significant inhibitory effect against K. pneumoniae, but is less effective against the other organisms. AmGly2 exhibits a more powerful inhibitory effect against E. coli at lower concentrations than EDTA (<3 mm) or AmPy2 , but loses its efficacy at higher concentrations. The growth inhibition of EDTA and AmGly2 on mutant E. coli strains with defects in outer-membrane lipopolysaccharide (LPS) structures has been assessed to provide insight into the unexpected behaviour. Taken together, the results contradict the assumption of a simple link between metal ion affinity and antimicrobial efficacy.


Assuntos
Amidas/química , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Íons/química , Metais/química , Staphylococcus aureus/efeitos dos fármacos , Ligantes
9.
Magn Reson Chem ; 56(10): 983-992, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29278289

RESUMO

Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown.

10.
Magn Reson Chem ; 56(10): 969-975, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29520830

RESUMO

Recent developments in data sampling and processing techniques have made it possible to acquire 2-dimensional NMR spectra of small molecules at digital resolutions in both dimensions approaching the intrinsic limitations of the equipment and sample on a realistic timescale. These developments offer the possibility of enormously increased effective resolution (peak dispersion) and the ability to effectively study samples where peak overlap was previously a limiting factor. Examples of such spectra have been produced for a number of 2-dimensional techniques including TOCSY and HSQC. In this paper, we investigate some of the problems in applying such techniques to COSY spectra and suggest a modification to the classic experiment that alleviates some of these problems.

11.
Angew Chem Int Ed Engl ; 57(33): 10549-10553, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29846037

RESUMO

Stability towards protease degradation combined with modular synthesis has made peptoids of considerable interest in the fields of chemical biology, medicine, and biomaterials. Given their tertiary amide backbone, peptoids lack the capacity to hydrogen-bond, and as such, controlling secondary structure can be challenging. The incorporation of bulky, charged, or chiral aromatic monomers can be used to control conformation but such building blocks limit applications in many areas. Through NMR and X-ray analysis we demonstrate that non-chiral neutral fluoroalkyl monomers can be used to influence the Kcis/trans equilibria of peptoid amide bonds in model systems. The cis-isomer preference displayed is highly unprecedented given that neither chirality nor charge is used to control the peptoid amide conformation. The application of our fluoroalkyl monomers in the design of a series of linear peptoid oligomers that exhibit stable helical structures is also reported.


Assuntos
Peptoides/química , Amidas/química , Dicroísmo Circular , Cristalografia por Raios X , Flúor/química , Cinética , Espectroscopia de Ressonância Magnética , Conformação Proteica em alfa-Hélice , Estereoisomerismo
12.
J Am Chem Soc ; 139(49): 17882-17889, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29151342

RESUMO

Small, apolar aromatic groups, such as phenyl rings, are commonly included in the structures of fluorophores to impart hindered intramolecular rotations, leading to desirable solid-state luminescence properties. However, they are not normally considered to take part in through-space interactions that influence the fluorescent output. Here, we report on the photoluminescence properties of a series of phenyl-ring molecular rotors bearing three, five, six, and seven phenyl groups. The fluorescent emissions from two of the rotors are found to originate, not from the localized excited state as one might expect, but from unanticipated through-space aromatic-dimer states. We demonstrate that these relaxed dimer states can form as a result of intra- or intermolecular interactions across a range of environments in solution and solid samples, including conditions that promote aggregation-induced emission. Computational modeling also suggests that the formation of aromatic-dimer excited states may account for the photophysical properties of a previously reported luminogen. These results imply, therefore, that this is a general phenomenon that should be taken into account when designing and interpreting the fluorescent outputs of luminescent probes and optoelectronic devices based on fluorescent molecular rotors.

13.
Chemistry ; 23(32): 7755-7760, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28403539

RESUMO

The self-assembling tendencies of guanosine-5'-monophosphate (GMP) can be drastically increased using polyamines, with potential applications in the production of biocompatible smart materials, as well as for the design of antitumor drugs based on G-quadruplex stabilization. Results from scanning electron microscopy (SEM), wide angle X-ray scattering (WAXS), rheology, and nuclear magnetic resonance (NMR) z-spectroscopy studies are presented.

14.
Inorg Chem ; 56(7): 4028-4038, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28293948

RESUMO

Ytterbium and yttrium complexes of octadentate ligands based on 1,4,7,10-tetraazacyclododecane with a coordinated pyridyl group and either tricarboxylate (L1) or triphosphinate (L2) donors form twisted-square-antiprismatic structures. The former crystallizes in the centrosymmetric group P21/c, with the two molecules related by an inversion center, whereas the latter was found as an unusual kryptoracemate in the chiral space group P21. Pure shift NMR and EXSY spectroscopy allowed the dynamic exchange between the (RRR)-Δ-(δδδδ) and (RRR)-Λ-(λλλλ) TSAP diastereomers of the [Y.L2] complex to be detected. The rate-limiting step in the exchange between Δ and Λ isomers involves cooperative ligand arm rotation, which is much faster for [Ln.L1] than for [Ln.L2]. Detailed analysis of NOESY, COSY, HSQC, and HMBC spectra confirms that the major conformer in solution is (RRR)-Λ-(λλλλ), consistent with crystal structure analysis and DFT calculations. The magnetic susceptibility tensors for [Yb.L1] and [Yb.L2], obtained from a full pseudocontact chemical shift analysis, are very different, in agreement with a CASSCF calculation. The remarkably different pseudocontact shift behavior is explained by the change in the orientation of the pseudocontact shift field, as defined by the Euler angles of the susceptibility tensor.

15.
Mol Pharm ; 13(1): 211-22, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26602457

RESUMO

Valsartan (VAL) is an antihypertensive drug marketed in an amorphous form. Amorphous materials can have different physicochemical properties depending on preparation method, thermal history, etc., but the nature of such materials is difficult to study by diffraction techniques. This study characterizes two different amorphous forms of valsartan (AR and AM) using solid-state NMR (SSNMR) as a primary investigation tool, supported by solution-state NMR, FT-IR, TMDSC, and dissolution tests. The two forms are found to be clearly distinct, with a significantly higher level of structural arrangement in the AR form, as observed in (13)C, (15)N, and (1)H SSNMR. (13)C and (15)N NMR indicates that the fully amorphous material (AM) contains an approximately equal ratio of cis-trans conformers about the amide bond, whereas the AR form exists mainly as one conformer, with minor conformational "defects". (1)H ultrafast MAS NMR shows significant differences in the hydrogen bonding involving the tetrazole and acid hydrogens between the two materials, while (15)N NMR shows that both forms exist as a 1,2,3,4-tetrazole tautomer. NMR relaxation times show subtle differences in local and bulk molecular mobility, which can be connected with the glass transition, the stability of the glassy material, and its response to aging. Counterintuitively the fully amorphous material is found to have a significantly lower dissolution rate than the apparently more ordered AR material.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Valsartana/química , Estabilidade de Medicamentos , Conformação Molecular
16.
Analyst ; 141(1): 236-42, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26580299

RESUMO

We describe the design and application of robust, general-purpose water signal suppression pulse sequences well suited to chemometric work. Such pulse sequences need to deal well with pulse mis-calibrations, radiation damping, chemical exchange, and the presence of sample inhomogeneities, as well as with significant variations in sample characteristics such as pH, ionic strength, relaxation characteristics and molecular weight. Of course, such pulse sequences should produce un-distorted lineshapes and baselines and work well both under automation and in the hands of non-experts. As an example, one such pulse sequences, Robust-5, will be presented. This new pulse sequence meets those criteria and is able to reduce a 50 M proteo water signal down to a 0.9 mM level, without fine tuning, and under automation, and it is therefore well suited to the most demanding of analytical applications.

17.
J Biomol NMR ; 62(1): 43-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25737243

RESUMO

Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here. Both resolution and sensitivity are improved, without any increase in experiment time. In these experiments, free induction decays are collected in short bursts of data acquisition, with durations short on the timescale of J-evolution, interspersed with suitable refocusing elements. The net effect is real-time (t 2) broadband homodecoupling, suppressing the multiplet structure caused by proton-proton interactions. The key feature of the refocusing elements is that they discriminate between the resonances of active (observed) and passive (coupling partner) spins. This can be achieved either by using band-selective refocusing or by the BIRD element, in both cases accompanied by a nonselective 180° proton pulse. The latter method selects the active spins based on their one-bond heteronuclear J-coupling to (15)N, while the former selects a region of the (1)H spectrum. Several novel pure shift experiments are presented, and the improvements in resolution and sensitivity they provide are evaluated for representative samples: the N-terminal domain of PGK; ubiquitin; and two mutants of the small antifungal protein PAF. These new experiments, delivering improved sensitivity and resolution, have the potential to replace the current standard HSQC experiments.


Assuntos
Proteínas Fúngicas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Penicillium chrysogenum/metabolismo , Ubiquitina/química , Antifúngicos/química , Mutação , Isótopos de Nitrogênio/química , Fosfoglicerato Quinase/química , Dobramento de Proteína , Prótons , Sensibilidade e Especificidade
18.
Chemistry ; 21(17): 6623-30, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25756360

RESUMO

The lack of resolving power in everyday NMR produces ambiguous data, causing bottlenecks, lengthening multi-step projects and increasing the likelihood of making mistakes. Significant impacts can be made in many fields by minimising these problems with the aid of pure shift techniques.

19.
Pharm Res ; 32(2): 414-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25115829

RESUMO

PURPOSE: The objective of this study was to evaluate the thermal behavior of crystalline and amorphous bisoprolol fumarate and its compatibility with amorphous valsartan. This pharmacologically relevant drug combination is a potential candidate for fixed-dose combination formulation. METHODS: DSC and TMDSC were used to examine thermal behavior of bisoprolol fumarate. SSNMR and XRPD were applied to probe the solid state forms. The thermal behavior of physical mixtures with different concentrations of bisoprolol and valsartan were examined by DSC and TMDSC, and the observed interactions were investigated by XRPD, solution- and solid-state NMR. RESULTS: The phase transitions from thermal methods and solid-state NMR spectra of crystalline and amorphous bisoprolol fumarate are reported. Strong interactions between bisoprolol fumarate and valsartan were observed above 60 C, resulting in the formation of a new amorphous material. Solution- and solid-state NMR provided insight into the molecular nature of the incompatibility. CONCLUSIONS: A combined analysis of thermal methods, solution- and solid-state NMR and XRPD experiments allowed the investigation of the conformational and dynamic properties of bisoprolol fumarate. Since bisoprolol fumarate and valsartan react to form a new amorphous product, formulation of a fixed-dose combination would require separate reservoirs for bisoprolol and valsartan to prevent interactions. Similar problems might be expected with other excipients or APIs containing carboxylic groups.


Assuntos
Bisoprolol/análise , Bisoprolol/química , Espectroscopia de Ressonância Magnética/métodos , Tetrazóis/análise , Tetrazóis/química , Valina/análogos & derivados , Difração de Raios X/métodos , Varredura Diferencial de Calorimetria/métodos , Valina/análise , Valina/química , Valsartana
20.
Chem Sci ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39239481

RESUMO

Herein we demonstrate that the rapid 'shapeshifting' constitutional isomerization of a substituted bullvalene is influenced by the E-to-Z configurational isomerization of a remote carbamate group, giving rise to correlated motion. We find that, while the E-configurational isomer of a bulky carbamate favors the ß-bullvalene constitutional isomer, a noncovalent bonding interaction within the Z-carbamate tips the equilibrium toward the γ-bullvalene form. Using DFT modelling and NMR spectroscopy, this long-range interaction is identified as being between the bullvalene core and a pendant phenyl group connected to the carbamate. Coupling the constitutional changes of a bullvalene to a reciprocal configurational isomerization through a long-range interaction in this way will allow shapeshifting rearrangements to be exploited as part of collective motion in extended structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA