RESUMO
Plastic debris is thought to be widespread in freshwater ecosystems globally1. However, a lack of comprehensive and comparable data makes rigorous assessment of its distribution challenging2,3. Here we present a standardized cross-national survey that assesses the abundance and type of plastic debris (>250 µm) in freshwater ecosystems. We sample surface waters of 38 lakes and reservoirs, distributed across gradients of geographical position and limnological attributes, with the aim to identify factors associated with an increased observation of plastics. We find plastic debris in all studied lakes and reservoirs, suggesting that these ecosystems play a key role in the plastic-pollution cycle. Our results indicate that two types of lakes are particularly vulnerable to plastic contamination: lakes and reservoirs in densely populated and urbanized areas and large lakes and reservoirs with elevated deposition areas, long water-retention times and high levels of anthropogenic influence. Plastic concentrations vary widely among lakes; in the most polluted, concentrations reach or even exceed those reported in the subtropical oceanic gyres, marine areas collecting large amounts of debris4. Our findings highlight the importance of including lakes and reservoirs when addressing plastic pollution, in the context of pollution management and for the continued provision of lake ecosystem services.
Assuntos
Lagos , Plásticos , Poluição da Água , Abastecimento de Água , Ecossistema , Lagos/química , Plásticos/análise , Plásticos/classificação , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos , Inquéritos e Questionários , Urbanização , Atividades HumanasRESUMO
In this study, the fluxes of microplastics (mp) were quantified during a 12-month period for three rural headwater lake catchments in Muskoka-Haliburton, south-central Ontario, Canada. A novel catchment particle balance approach was used, incorporating inputs from atmospheric deposition and stream inflows against lake outflow and sedimentation. This approach provides the first reported observation-based estimates of microplastic residence time in freshwater lakes. Atmospheric deposition had the highest daily microplastic flux (3.95-8.09 mp/m2/day), compared to the inflow streams (2.21-2.34 mp/m2/day), suggesting that it is the dominant source of microplastics to rural regions. Approximately 44-71% of the deposited microplastics were retained in the terrestrial catchments and 30-49% of the microplastics in the stream inflows were retained in the study lakes. Given that output fluxes ranged from 0.72-3.76 mp/m2/day in the sediment and 1.18-1.66 mp/m2/day in the lake outflows, the microplastic residence time was estimated to be between 3 and 12 years, suggesting that lakes are an important reservoir for microplastics. Fibers were the dominant shape in atmospheric deposition, streamwater, and lake water; however, in lake sediment, there was a higher proportion of fragments. Across all media, poly(ethylene terephthalate) was the dominant polymer identified (23%).
Assuntos
Lagos , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Ontário , Monitoramento AmbientalRESUMO
Ozone is the most damaging air pollutant to vegetation globally. Metrics of accumulated ozone above a concentration threshold (e.g. AOT40, ppb·h) have been widely used to assess ozone risk. However, there is growing consensus that accumulated Phytotoxic Ozone Dose (POD) above a receptor-specific critical stomatal flux threshold (y; nmol O3 m-2 s-1), expressed per unit of projected leaf area, provides a more reliable risk assessment, as it considers ozone entering the leaf (PODy, mmol m-2 leaf area). Few studies have assessed both concentration- and flux-based metrics using site-specific observations of ozone and meteorology. In this study we assessed the risk that ozone poses to five vegetation types across eight sites in Ireland during 2005-2021, using AOT40 and PODy risk metrics, and we predicted impacts using dose-response relationships. Long-term trends in both metrics were also assessed. The PODy critical level for vegetation protection was exceeded for all vegetation types, with exceedances most common at Atlantic coastal sites, and for tree species (beech POD1 15.7-25.7 mmol/m2 PLA). When PODy and AOT40 results were normalised based on their respective critical levels, predicted impacts were higher for PODy. There were significant increases in PODy for three vegetation types at rural sites during the study period, which also experienced increases in temperature and global solar radiation. The long-term trends were consistent with other European studies that show decreases in AOT40 and increases in PODy. While ozone concentrations in Ireland are relatively low (39-75 µg/m3 five-year average range), the humid climate and longer growing season may lead to elevated stomatal ozone uptake and thereby a risk to vegetation.
RESUMO
Microplastics (MPs) have been found in all terrestrial, marine, and riparian environments, including remote regions. This implies that atmospheric transport is an important pathway when considering MP sources and global budgets. However, limited empirical data exist to aid in effective development and parameterization of MP atmospheric transport models. This study measured the atmospheric settling and horizontal drift velocities of various sizes and shapes of MPs in two specially designed settling columns using a laser Doppler anemometer. The settling velocities were generally lower than modeled values, while shape exerted the most significant influence on the rate of settling. Rather than conforming to well-established, power-law models, each class of MP exhibited a linear but different relationship between MP size and settling velocity, with markedly higher slopes for the spheres and cylinders as compared to the films and fibers. Shape also had a substantial influence on particle drift, with the fibers and films exhibiting the greatest horizontal motion, as suggestive of their changing orientation in response to particle interactions and fluid drag. As a consequence, microplastic particles identified within atmospheric deposition samples collected at a single point may derive from entirely different sources representing a wide range in transport distance.
Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Nitrogen (N) emissions and atmospheric deposition have increased significantly during the last century and become a stressor for many N-sensitive plant species. Understanding individual and community herbaceous plant species thresholds to atmospheric N deposition can inform emissions reduction policy. Here, we present results using Threshold Indicator Taxa Analysis (TITAN) applied to more than 1200 unique plant species and 24 vegetation communities (i.e., alliances) across the United States (US) to assess vulnerability to N deposition. Alliance-level thresholds (change points) for species decreasing in abundance along the gradient ranged from 1.8 to 14.3 kg N haâ1 yearâ1 and tended to be lower in the west than the east, which suggests that eastern communities, where N deposition has been historically higher, may have already lost many sensitive species. For the species that were present in more than one alliance, over half had a variable response to the N deposition gradient, suggesting that local factors affect vulnerability. Significant progress has been made during the past 30 years to reduce N emissions, which has reduced the percentage of plots at risk to N deposition from 72% to 35%. Nevertheless, over a third of plots remain at risk, and an average reduction of N deposition of 20% would protect half of the plots where N deposition exceeds community thresholds. Furthermore, the alliance- and species-level change points determined in this study may be used to inform N critical loads.
Assuntos
Nitrogênio , Plantas , Nitrogênio/análise , Estados UnidosRESUMO
The Athabasca oil sands region (AOSR) in north-eastern Alberta, Canada, contains the world's third largest known bitumen deposit. Oil sands (OS) operations produce emissions known to contribute to acidic and alkaline deposition, which can alter the chemistry of the receiving surface waters, including dissolved organic carbon (DOC). Little is known regarding the natural variability of aquatic DOC among lakes within the AOSR. Surface-water data from 50 lakes were analyzed; variables known to be associated with the light-absorptive properties of DOC (true color [TC]) were evaluated to investigate the potential variability of chromophoric DOC (CDOC). Comparison of TC and DOC revealed two distinct "high" (H) and "low" (L) lake subpopulations, the former being characterized by high relative TC and low DOC, and the latter by the inverse. The H lakes were defined by variables known to be associated with CDOC, while L lakes appeared well-buffered potentially owing to groundwater inputs. The divergent optical properties between subpopulations appeared partially attributable to pH-limited Fe complexation. Trajectory analysis indicated that H lakes most likely to receive atmospheric deposition from OS sources experienced significantly lower pH. These results are contrary to previous studies that found OS emissions to have minimal acidifying effect over lakes throughout the AOSR.
Assuntos
Lagos , Poluentes Químicos da Água , Alberta , Carbono , Monitoramento Ambiental , Campos de Petróleo e Gás , Poluentes Químicos da Água/análiseRESUMO
Microfibers (mf) are the most common type of microplastic in the environment. Few studies have focused on their abundance in atmospheric deposition in background environments. In the current study, we collected wet-only and bulk rainfall from four precipitation chemistry monitoring stations, primarily located in coastal areas around Ireland. Anthropogenic mf were observed in all samples; the average deposition across the four study sites was 80 mf m-2 day-1. Wet-only mf deposition was 70 mf m-2 day-1 compared with bulk deposition of 100 mf m-2 day-1. The wet-only collectors were estimated to capture â¼70% of the bulk collectors, suggesting that dry deposition makes up at least 30% of total deposition. Meteorological variables, i.e., relative humidity, rainfall volume, wind speed, and wind direction, were significantly related to mf abundance, suggesting that rainfall washout and air mass movement are important predictors of mf deposition in background regions. In total, 15% of all anthropogenic mf were identified as plastic. The most abundant polymer type was polyester or polyethylene terephthalate at 71%, followed by polyacrylonitrile at 11%, polyethylene at 11%, and polypropylene at 4%. The average deposition of plastic mf was 12 mf m-2 day-1.
Assuntos
Poluentes Atmosféricos , Plásticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Europa (Continente) , Irlanda , MicroplásticosRESUMO
The objective of this study was to assess the current chemistry of trace elements in upland headwater lakes in Ireland and determine their trends during the last decade in response to decreasing emissions. Twenty-nine upland lakes were sampled in 2017-2018; 19 were previously sampled in 2007-2008. The 2017-2018 samples were analyzed for conductivity, pH, DOC, and 18 trace elements. The lakes had low element concentrations; only 7 of 18 trace elements were > 1 µg/L (Fe, Al, Zn, Mn, B, Sr and Ba). Nine elements were assessed for significant decadal changes; four elements decreased (B, Co, Mn, and Sr) and one increased (Pb). Their correlation with conductivity, pH, and DOC and the associated changes in those variables partially explained the observed trends. In general, elements that were correlated with DOC did not decrease, while those that were not correlated decreased between the two periods. Despite decreased anthropogenic emissions, ecosystem recovery and climate perturbations can confound or mask the benefits of emissions reductions.
Assuntos
Monitoramento Ambiental/métodos , Lagos/química , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Altitude , Ecossistema , IrlandaRESUMO
The target load concept is an extension of the critical load concept of air pollution inputs to ecosystems. The advantage of target loads over critical loads is that one can define the deposition and the point in time (target year) when the critical (chemical) limit is no longer violated. This information on the timing of recovery requires dynamic modeling. Using a well-documented dynamic model, target loads for acidic deposition were determined for 848 surface waters across Finland, Norway, Sweden, and the United Kingdom for the target year 2050. In the majority of sites ( n = 675), the critical ANC-limit was predicted to be achieved by 2050; however, for 127 sites, target loads were determined. In addition, 46 sites were infeasible, i.e., even a reduction of anthropogenic deposition to zero would not achieve the limit by 2050. The average maximum target load for sulfur was 38% lower than the respective critical load across the study lakes ( n = 127). Target loads on a large regional scale can inform effects-based emission reduction policies; the current assessment suggests that reductions beyond the Gothenburg Protocol are required to ensure surface water recovery from acidification by 2050.
Assuntos
Ecossistema , Nitrogênio , Monitoramento Ambiental , Finlândia , Noruega , Enxofre , Suécia , Reino UnidoRESUMO
Biomonitoring with mosses is a common method widely used to assess the spatial and temporal trends of atmospheric deposition in Europe since its introduction in the 1970s. Based on previous investigations, certain moss species provide the most accurate reflection of atmospheric deposition. However, sampling of just one species across large areas can pose a challenge, therefore the ability to use multiple moss species interchangeably is integral to an effective moss biomonitoring survey. In this study, biomonitoring abilities of two common species (Hylocomium splendens [Hs] and Pleurozium schreberi [Ps]) were compared to a potential new biomonitoring species endemic to North America (Isothecium stoloniferum [Is]). Thirteen metal concentrations were analyzed (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, and Pb) in moss tissue from 20 sites with co-located species (Ps/Hs, Is/Hs) Five metals (Al, V, Fe, Ni, and Pb) showed significant and strong correlations (Spearman correlation, r ≥ 0.7 α = 0.05) for all three species, reflecting the established deposition gradient in the region. Furthermore, there was no significant difference in observations (and moderate correlation) for Cr, which suggests that all species exhibited similar uptake abilities for these six metals (Al, V, Cr, Fe, Ni, and Pb). Four metals (Co, As, Se, and Cd) exhibited concentrations below detection at a number of sites, which may have influenced the assessment of interspecies relationships. It is recommended that interspecies calibration be carried out under all surveys that employ multiple moss species.
Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Oligoelementos/análise , Bryopsida , Europa (Continente) , Metais Pesados/análiseRESUMO
In 1999 we used the MAGIC (Model of Acidification of Groundwater In Catchments) model to project acidification of acid-sensitive European surface waters in the year 2010, given implementation of the Gothenburg Protocol to the Convention on Long-Range Transboundary Air Pollution (LRTAP). A total of 202 sites in 10 regions in Europe were studied. These forecasts can now be compared with measurements for the year 2010, to give a "ground truth" evaluation of the model. The prerequisite for this test is that the actual sulfur and nitrogen deposition decreased from 1995 to 2010 by the same amount as that used to drive the model forecasts; this was largely the case for sulfur, but less so for nitrogen, and the simulated surface water [NO3(-)] reflected this difference. For most of the sites, predicted surface water recovery from acidification for the year 2010 is very close to the actual recovery observed from measured data, as recovery is predominantly driven by reductions in sulfur deposition. Overall these results show that MAGIC successfully predicts future water chemistry given known changes in acid deposition.
Assuntos
Ácidos/química , Água Subterrânea/química , Modelos Teóricos , Poluentes Químicos da Água/análise , Simulação por Computador , Monitoramento Ambiental/métodos , Europa (Continente) , Previsões , GeografiaRESUMO
Trace elements (n = 23) in Irish headwater lakes (n = 126) were investigated to determine their ambient concentrations, fractionation (total, dissolved, and non-labile), and geochemical controls. Lakes were generally located in remote upland, acid-sensitive regions along the coastal margins of the country. Total trace metal concentrations were low, within the range of natural pristine surface waters; however, some lakes (~20 %) had inorganic labile aluminum and manganese at levels potentially harmful to aquatic organisms. Redundancy analysis indicated that geochemical weathering was the dominant controlling factor for total metals, compared with acidity for dissolved metals. In addition, many metals were positively correlated with dissolved organic carbon indicating their affinity (or complexation) with humic substances (e.g., aluminum, iron, mercury, lead). However, a number of trace metals (e.g., aluminum, mercury, zinc) were correlated with anthropogenic acidic deposition (i.e., non-marine sulfate), suggesting atmospheric sources or elevated leaching owing to acidic deposition. As transboundary air pollution continues to decline, significant changes in the cycling of trace metals is anticipated.
Assuntos
Lagos/química , Metais/química , Poluentes Químicos da Água/química , Ecossistema , Irlanda , OligoelementosRESUMO
Microplastics (plastic particles <5 mm) were first identified in the environment during the 1970s and have since become ubiquitous across every environmental compartment. However, few studies have focused on atmospheric microplastics, and even fewer have used biological monitoring to assess their atmospheric deposition. Here, we assess the efficacy of moss bags as an active biomonitoring technique for atmospheric microplastic deposition. Moss (Pleurozium schreberi) bags were exposed in duplicate at nine deployment sites across a gradient of urban intensity in southern Ontario, Canada. A total of 186 microplastics (mp) were detected in the moss bags, resulting in a mean accumulation of 7.9 mp g-1 dry weight moss across all sites during the exposure period (45 days). The median microplastic length was 0.56 mm (range 0.03-4.51 mm), and the dominant microplastic type was fibres (47%), followed by fragments (39%). Microplastic accumulation significantly increased with urban intensity, ranging from 3.7 mp g-1 in low-density suburban areas to 10.7 mp g-1 in densely populated and trafficked urban areas. In contrast, microfibres by proportion dominated in suburban (62%) compared with urban areas (33%). Microplastic deposition was estimated to range from 21 to 60 mp m-2 day-1 across the nine deployment sites. The results suggest that moss bags may be a suitable technique for the active biomonitoring of atmospheric microplastic deposition in urban environments.
RESUMO
It is well established that persistent organic pollutants are transported long distances in the atmosphere and deposited into aquatic and terrestrial ecosystems in remote areas, including high altitude lakes. The objective of this research was to evaluate whether compounds of wastewater origin were present in four remote upland headwater lakes in Ireland that primarily receive loadings from atmospheric deposition. Using Polar Organic Chemical Integrative Samplers (POCIS) deployed in the lakes for 60 to 68 days, seven compounds were detected at levels that could be quantified but 25 of the target compounds were not detected. The detected compounds included the cannabinoid metabolite, tetrahydrocannabinol carboxylate (THC-COOH), codeine, acetaminophen (paracetamol), ibuprofen, and the artificial sweeteners, sucralose, and saccharin, which were all present at concentrations estimated to be < 125 ng/L. Caffeine was also present in the lakes at estimated concentrations between 213 and 1320 ng/L. Cocaine and tramadol were detected in POCIS deployed in some of the lakes, but at levels below the limits of quantitation. The highest concentrations of the target analytes were detected in two lakes located in the eastern part of Ireland. These data are consistent with regional atmospheric transport of these compounds originating from wastewater treatment plants in Ireland. However, contaminants from wastewater treatment plants in the United Kingdom may also be a source in these upland lakes that are located far from emissions of urban pollution.
Assuntos
Lagos , Poluentes Químicos da Água , Lagos/química , Águas Residuárias/análise , Ecossistema , Poluentes Químicos da Água/análise , Irlanda , Compostos Orgânicos , Monitoramento AmbientalRESUMO
Increasing forest cover by regreening mining and smelting degraded landscapes provides an opportunity for global carbon (C) sequestration, however, the reported effects of regreening on soil C processes are mixed. One of the world's largest regreening programs is in the City of Greater Sudbury, Canada and has been ongoing since 1978. Prior to regreening, soils in the City of Greater Sudbury area were highly eroded, acidic, rich in metals, and poor in nutrients. This study used a chronosequence approach to investigate how forest soil C pools and fluxes have changed with stand age in highly "eroded" sites with minimal soil cover (n = 6) and "stable" sites covered by soil (n = 6). Encouragingly, the relationship between stand age and soil C processes (litterfall, litter decomposition, soil respiration, fine root growth) at both stable and eroded sites were comparable to observations reported for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) plantations that have not been subject to over a century of industrial impacts. There was a strong "home-field advantage" for local decomposers, where litter decomposition rates were higher using a site-specific pine litter compared with a common pine litter. Higher soil respiration at eroded sites was linked to higher soil temperature, likely because of a more open tree canopy. Forest floor C pools increased with stand age while mineral soil C and aggregate C concentrations decreased with stand age. This loss of soil C is small relative to the substantial increases in aboveground tree and forest floor C pools, leading to a sizeable increase in total ecosystem C pools following regreening.
Assuntos
Ecossistema , Pinus , Solo , Carbono/metabolismo , Florestas , Árvores/metabolismo , Pinus/metabolismoRESUMO
Here we investigate the suitability of Robinia pseudoacacia L. (black locust) leaflets as a novel biomonitor of airborne microplastics (MPs) including tyre wear particles (TWPs). Leaflets were collected from rural roadside locations (ROs, n = 5) and urban parks (UPs, n = 5) in Siena, Italy. MPs were removed by washing, identified by stereomicroscope, and analysed for polymer type by Fourier transform infrared spectroscopy. Daily MP deposition was estimated from leaf area. The mass magnetic susceptibility and the bioaccumulation of traffic-related potentially toxic elements (PTEs) were also analysed. The total number of MPs at ROs was significantly higher at 2962, dominated by TWPs, compared with 193 in UPs, where TWPs were not found. In contrast, total microfibres were significantly higher in UPs compared with ROs (185 vs. 86). Daily MP deposition was estimated to range from 4.2 to 5.1 MPs/m2/d across UPs and 29.9-457.6 MPs/m2/d across ROs. The polymer types at ROs were dominated by rubber (80%) from TWPs, followed by 15% polyamide (PA) and 5% polysulfone (PES), while in UPs the proportion of PES (44%) was higher than PA (22%) and polyacrylonitrile (11%). The mean mass magnetic susceptibility, a proxy of the bioaccumulation of traffic-related metallic particles, was higher at ROs (0.62 ± 0.01 10-8 m3/kg) than at UPs (-0.50 ± 0.03 10-8 m3/kg). The content of PTEs was similar across sites, except for significantly higher concentrations of Sb, a tracer of vehicle brake wear, at ROs (0.308 ± 0.008 µg/g) compared with UPs (0.054 ± 0.006 µg/g). Our results suggest that the waxy leaflets and easy determination of surface area make Robinia an effective biomonitor for airborne MPs including TWPs.
RESUMO
A critical load is a deposition limit below which harmful effects for a given ecosystem do not occur; the approach has underpinned European sulfur (S) and nitrogen (N) effects-based emission reduction policies during the last two decades. Surface waters are an important resource in Finland, as such the development of models and determination of critical loads has played a central role in supporting their recovery from acidification or preservation of ecosystem health. Critical loads of acidity for Finnish lakes were determined using the steady-state First-order Acidity Balance (FAB) model in conjunction with comprehensive national surveys of surface waters (headwater lakes; n = 1066) and soils. In the 1980s almost 60% of the study lakes were exceeded, impacting brown trout and perch populations. The steep decline in emissions and acidic (S and N) deposition during the last two decades has reduced exceedance to <10%, and by 2020 exceedance is predicted to reach preindustrial (1880) levels. In concert with these reductions, chemical and biological recovery has been observed. The critical load approach has been instrumental in assessing impacts to surface waters in Finland and directing effects-based emission reduction policies.
Assuntos
Poluentes Atmosféricos/análise , Lagos/química , Modelos Teóricos , Nitrogênio/análise , Enxofre/análise , Animais , Monitoramento Ambiental , Finlândia , Concentração de Íons de Hidrogênio , Percas , Densidade DemográficaRESUMO
A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.
Assuntos
Lagos/química , Sulfatos/análise , Poluição do Ar , Alumínio/análise , Cátions/análise , Concentração de Íons de Hidrogênio , Irlanda , Dióxido de Enxofre , Tempo (Meteorologia)RESUMO
Polycyclic aromatic hydrocarbons (PAHs) are a concern due to their carcinogenicity and propensity for transboundary atmospheric transport. Ireland is located on the western periphery of Europe and assumed to receive clean Atlantic air. As such, it has been used as an atmospheric reference for comparison to other regions. Nonetheless, few studies have evaluated concentrations of PAHs within the Irish environment. In the current study, PAHs were measured at five upland (500-800 masl) headwater lake catchments in coastal regions around Ireland, remote from industrial point source emissions. Semipermeable membrane devices were deployed in lakes for a 6-month period in July 2009, and topsoils were sampled from each catchment during October 2010. The concentrations of PAHs were low at most study sites with respect to other temperate regions. Homologue groups partitioned between lake and soil compartments based on their molecular weight were: "lighter" substances, such as Phenanthrene and Fluorene, were found in higher proportions in lakes, whereas "heavier" compounds, such as Chrysene and Benz[a]anthracene, were more prominent in soils. Concentrations of PAHs were highest at the east coast sites, potentially due to contributions from historical transboundary and regional combustion sources.