Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Br J Cancer ; 122(7): 1005-1013, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32025027

RESUMO

BACKGROUND: Ibrutinib is a Bruton's tyrosine kinase (BTK) and interleukin-2-inducible kinase (ITK) inhibitor used for treating chronic lymphocytic leukaemia (CLL) and other cancers. Although ibrutinib is known to inhibit the growth of breast cancer cell growth in vitro, its impact on the treatment and metastasis of breast cancer is unclear. METHODS: Using an orthotopic mouse breast cancer model, we show that ibrutinib inhibits the progression and metastasis of breast cancer. RESULTS: Ibrutinib inhibited proliferation of cancer cells in vitro, and Ibrutinib-treated mice displayed significantly lower tumour burdens and metastasis compared to controls. Furthermore, the spleens and tumours from Ibrutinib-treated mice contained more mature DCs and lower numbers of myeloid-derived suppressor cells (MDSCs), which promote disease progression and are linked to poor prognosis. We also confirmed that ex vivo treatment of MDSCs with ibrutinib switched their phenotype to mature DCs and significantly enhanced MHCII expression. Further, ibrutinib treatment promoted T cell proliferation and effector functions leading to the induction of antitumour TH1 and CTL immune responses. CONCLUSIONS: Ibrutinib inhibits tumour development and metastasis in breast cancer by promoting the development of mature DCs from MDSCs and hence could be a novel therapeutic agent for the treatment of breast cancer.


Assuntos
Adenina/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Células Dendríticas/metabolismo , Células Supressoras Mieloides/metabolismo , Metástase Neoplásica/tratamento farmacológico , Piperidinas/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , Piperidinas/farmacologia
2.
Breast Cancer Res ; 16(3): R54, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24886617

RESUMO

INTRODUCTION: Although C-X-C motif chemokine 12 (CXCL12) has been shown to bind to C-X-C chemokine receptor type 7 (CXCR7), the exact molecular mechanism regulations by CXCL12/CXCR7 axis in breast tumor growth and metastasis are not well understood. CXCR7 expression has been shown to be upregulated during pathological processes such as inflammation and cancer. METHODS: Breast cancer cell lines were genetically silenced or pharmacologically inhibited for CXCR7 and/or its downstream target signal transducer and activator of transcription 3 (STAT3). 4T1 or 4T1 downregulated for CXCR7 and 4T1.2 breast cancer cell lines were injected in mammary gland of BALB/c mice to form tumors, and the molecular pathways regulating tumor growth and metastasis were assessed. RESULTS: In this study, we observed that CXCL12 enhances CXCR7-mediated breast cancer migration. Furthermore, genetic silencing or pharmacologic inhibition of CXCR7 reduced breast tumor growth and metastasis. Further elucidation of mechanisms revealed that CXCR7 mediates tumor growth and metastasis by activating proinflammatory STAT3 signaling and angiogenic markers. Furthermore, enhanced breast tumorigenicity and invasiveness were associated with macrophage infiltration. CXCR7 recruits tumor-promoting macrophages (M2) to the tumor site through regulation of the macrophage colony-stimulating factor (M-CSF)/macrophage colony-stimulating factor receptor (MCSF-R) signaling pathway. In addition, CXCR7 regulated breast cancer metastasis by enhancing expression of metalloproteinases (MMP-9, MMP-2) and vascular cell-adhesion molecule-1 (VCAM-1). We also observed that CXCR7 is highly expressed in invasive ductal carcinoma (IDC) and metastatic breast tissue in human patient samples. In addition, high CXCR7 expression in tumors correlates with worse prognosis for both overall survival and lung metastasis-free survival in IDC patients. CONCLUSION: These observations reveal that CXCR7 enhances breast cancer growth and metastasis via a novel pathway by modulating the tumor microenvironment. These findings identify CXCR7-mediated STAT3 activation and modulation of the tumor microenvironment as novel regulation of breast cancer growth and metastasis. These studies indicate that new strategies using CXCR7 inhibitors could be developed for antimetastatic therapy.


Assuntos
Neoplasias da Mama/patologia , Quimiocina CXCL12/metabolismo , Neoplasias Pulmonares/secundário , Receptores CXCR/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Ativação de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/biossíntese , Macrófagos/imunologia , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/genética , Transplante de Neoplasias , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Receptor de Fator Estimulador de Colônias de Macrófagos/biossíntese , Receptores CXCR/antagonistas & inibidores , Receptores CXCR/biossíntese , Receptores CXCR/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Microambiente Tumoral , Molécula 1 de Adesão de Célula Vascular/biossíntese
3.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659909

RESUMO

Despite tremendous advances in oncology, metastatic triple-negative breast cancer remains difficult to treat and manage with established therapies. Here, we show in mice with orthotopic triple-negative breast tumors that alternating (100 kHz), and low intensity (<1 mV/cm) induced electric fields (iEFs) significantly reduced primary tumor growth and distant lung metastases. Non-contact iEF treatment can be delivered safely and non-invasively in vivo via a hollow, rectangular solenoid coil. We discovered that iEF treatment enhances anti-tumor immune responses at both the primary breast and secondary lung sites. In addition, iEF reduces immunosuppressive TME by reducing effector CD8+ T cell exhaustion and the infiltration of immunosuppressive immune cells. Furthermore, iEF treatment reduced lung metastasis by increasing CD8+ T cells and reducing immunosuppressive Gr1+ neutrophils in the lung microenvironment. We also observed that iEFs reduced the metastatic potential of cancer cells by inhibiting epithelial-to-mesenchymal transition. By introducing a non-invasive and non-toxic electrotherapeutic for inhibiting metastatic outgrowth and enhancing anti-tumor immune response in vivo, treatment with iEF technology could add to a paradigm-shifting strategy for cancer therapy.

4.
Mol Oncol ; 17(5): 839-856, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35838343

RESUMO

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show that the expression of the slit guidance ligand 2 (SLIT2) tumor suppressor gene is reduced in SCLC tumors relative to adjacent normal tissue. In addition, the expression of the SLIT2 receptor, roundabout guidance receptor 1 (ROBO1), is upregulated. We find a positive association between SLIT2 expression and the Yes1 associated transcriptional regulator (YAP1)-expressing SCLC subtype (SCLC-Y), which shows a better prognosis. Using genetically engineered SCLC cells, adenovirus gene therapy, and preclinical xenograft models, we show that SLIT2 overexpression or the deletion of ROBO1 restricts tumor growth in vitro and in vivo. Mechanistic studies revealed significant inhibition of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs) in the SCLC tumors. In addition, SLIT2 enhances M1-like and phagocytic macrophages. Molecular analysis showed that ROBO1 knockout or SLIT2 overexpression suppresses the transforming growth factor beta 1 (TGF-ß1)/ß-catenin signaling pathway in both tumor cells and macrophages. Overall, we find that SLIT2 and ROBO1 have contrasting effects on SCLC tumors. SLIT2 suppresses, whereas ROBO1 promotes, SCLC growth by regulating the Tgf-ß1/glycogen synthase kinase-3 beta (GSK3)/ß-catenin signaling pathway in tumor cells and TAMs. These studies indicate that SLIT2 could be used as a novel therapeutic agent against aggressive SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Fator de Crescimento Transformador beta1/farmacologia , beta Catenina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/genética , Macrófagos/metabolismo
5.
Mol Biol Rep ; 39(2): 1667-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21617942

RESUMO

The DNA double strand break repair gene XRCC4, an important caretaker of genome stability and XRCC3 are suggested to play an imperative role in the development of carcinogenesis. However, no evidence has been provided showing that these genes are associated with risk of urinary bladder cancer (UBC). The study was designed to examine the polymorphisms associated with two genes namely XRCC4 G1394T (rs6869366), intron 3 (rs28360317), intron 7 rs1805377 and rs2836007 and XRCC3 (rs861539 and rs1799796), respectively and investigate their role as susceptible markers for UBC risk in North Indian cohort. In this hospital-based case-control study histologically confirmed 211 UBC patients and 244 age and gender matched controls of similar ethnicity were genotyped by means of PCR-RFLP. Significant different distributions in the frequency of the XRCC4 intron 3 genotype, but not the XRCC4 G1394T or intron 7 genotypes, between the UBC and control groups were observed. XRCC4 intron 7 Del/Del conferred enhanced risk (OR 1.94; P 0.017) in UBC. Interestingly, XRCC -1394 G>T variant genotype GG was associated with reduced risk (OR 0.27; P 0.020). However, none of the four polymorphisms in XRCC4 were associated with tobacco smoking and risk of recurrence in patients treated with BCG immunotherapy. Similarly, none of the XRCC3 polymorphisms were associated with UBC susceptibility. Our results suggested that the XRCC4 intron 3 rs6869366 genotype and intron 7 rs28360317 may be associated with UBC risk and may be a novel useful marker for primary prevention and anticancer intervention.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Marcadores Genéticos/genética , Humanos , Índia/epidemiologia , Razão de Chances , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Fatores de Risco , Neoplasias da Bexiga Urinária/metabolismo
6.
Mol Oncol ; 16(7): 1508-1522, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33969603

RESUMO

The role of commensal bacterial microbiota in the pathogenesis of human malignancies has been a research field of incomparable progress in recent years. Although breast tissue is commonly assumed to be sterile, recent studies suggest that human breast tissue may contain a bacterial microbiota. In this study, we used an immune-competent orthotopic breast cancer mouse model to explore the existence of a unique and independent bacterial microbiota in breast tumors. We observed some similarities in breast cancer microbiota with skin; however, breast tumor microbiota was mainly enriched with Gram-negative bacteria, serving as a primary source of lipopolysaccharide (LPS). In addition, dextran sulfate sodium (DSS) treatment in late-stage tumor lesions increased LPS levels in the breast tissue environment. We also discovered an increased expression of S100A7 and low level of TLR4 in late-stage tumors with or without DSS as compared to early-stage tumor lesions. The treatment of breast cancer cells with LPS increased the expression of S100A7 in breast cancer cells in vitro. Furthermore, S100A7 overexpression downregulated TLR4 and upregulated RAGE expression in breast cancer cells. Analysis of human breast cancer samples also highlighted the inverse correlation between S100A7 and TLR4 expression. Overall, these findings suggest that the commensal microbiota of breast tissue may enhance breast tumor burden through a novel LPS/S100A7/TLR4/RAGE signaling axis.


Assuntos
Neoplasias da Mama , Microbiota , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Proteína A7 Ligante de Cálcio S100/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
7.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267489

RESUMO

Chemotherapy forms the backbone of current treatments for many patients with advanced non-small-cell lung cancer (NSCLC). However, the survival rate is low in these patients due to the development of drug resistance, including cisplatin resistance. In this study, we developed a novel strategy to combat the growth of cisplatin-resistant (CR) NSCLC cells. We have shown that treatment with the plant-derived, non-psychotropic small molecular weight molecule, cannabidiol (CBD), significantly induced apoptosis of CR NSCLC cells. In addition, CBD treatment significantly reduced tumor progression and metastasis in a mouse xenograft model and suppressed cancer stem cell properties. Further mechanistic studies demonstrated the ability of CBD to inhibit the growth of CR cell lines by reducing NRF-2 and enhancing the generation of reactive oxygen species (ROS). Moreover, we show that CBD acts through Transient Receptor Potential Vanilloid-2 (TRPV2) to induce apoptosis, where TRPV2 is expressed on human lung adenocarcinoma tumors. High expression of TRPV2 correlates with better overall survival of lung cancer patients. Our findings identify CBD as a novel therapeutic agent targeting TRPV2 to inhibit the growth and metastasis of this aggressive cisplatin-resistant phenotype in NSCLC.

8.
Front Bioeng Biotechnol ; 10: 888431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118583

RESUMO

Cancer-associated fibroblasts (CAFs) play an active role in remodeling the local tumor stroma to support tumor initiation, growth, invasion, metastasis, and therapeutic resistance. The CAF-secreted chemokine, CXCL12, has been directly implicated in the tumorigenic progression of carcinomas, including breast cancer. Using a 3-D in vitro microfluidic-based microtissue model, we demonstrate that stromal CXCL12 secreted by CAFs has a potent effect on increasing the vascular permeability of local blood microvessel analogues through paracrine signaling. Moreover, genetic deletion of fibroblast-specific CXCL12 significantly reduced vessel permeability compared to CXCL12 secreting CAFs within the recapitulated tumor microenvironment (TME). We suspected that fibroblast-mediated extracellular matrix (ECM) remodeling and contraction indirectly accounted for this change in vessel permeability. To this end, we investigated the autocrine effects of CXCL12 on fibroblast contractility and determined that antagonistic blocking of CXCL12 did not have a substantial effect on ECM contraction. Our findings indicate that fibroblast-secreted CXCL12 has a significant role in promoting a leakier endothelium hospitable to angiogenesis and tumor cell intravasation; however, autocrine CXCL12 is not the primary upstream trigger of CAF contractility.

9.
J Exp Clin Cancer Res ; 41(1): 54, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135586

RESUMO

BACKGROUND: Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS: In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS: Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.


Assuntos
Neoplasias da Mama/genética , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Proteína A7 Ligante de Cálcio S100/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Microambiente Tumoral
10.
Cancer Res ; 81(20): 5255-5267, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400395

RESUMO

Tumor-associated macrophages (TAM) are heterogeneous in nature and comprise antitumor M1-like (M1-TAM) or pro-tumor M2-like (M2-TAM) TAMs. M2-TAMs are a major component of stroma in breast tumors and enhance metastasis by reducing their phagocytic ability and increasing tumor fibrosis. However, the molecular mechanisms that regulate phenotypic plasticity of TAMs are not well known. Here we report a novel tumor suppressor Slit2 in breast cancer by regulating TAMs in the tumor microenvironment. Slit2 reduced the in vivo growth and metastasis of spontaneous and syngeneic mammary tumor and xenograft breast tumor models. Slit2 increased recruitment of M1-TAMs to the tumor and enhanced the ability of M1-TAMs to phagocytose tumor cells in vitro and in vivo. This Slit2-mediated increase in M1-TAM phagocytosis occurred via suppression of IL6. Slit2 was also shown to diminish fibrosis in breast cancer mouse models by increasing the expression of matrix metalloproteinase 13 in M1-TAMs. Analysis of patient samples showed high Slit2 expression strongly associated with better patient survival and inversely correlated with the abundance of CD163+ TAMs. Overall, these studies define the role of Slit2 in inhibiting metastasis by activating M1-TAMs and depleting tumor fibrosis. Furthermore, these findings suggest that Slit2 can be a promising immunotherapeutic agent to redirect TAMs to serve as tumor killers for aggressive and metastatic breast cancers. In addition, Slit2 expression along with CD163+ TAMs could be used as an improved prognostic biomarker in patients with breast cancer. SIGNIFICANCE: This study provides evidence that the antitumor effect of Slit2 in breast cancer occurs by activating the phagocytic activity of M1-like tumor-associated macrophages against tumor cells and diminishing fibrosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/prevenção & controle , Fibrose/prevenção & controle , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fagocitose , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Fibrose/imunologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 12: 753477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777365

RESUMO

Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Neoplasias Mamárias Experimentais/terapia , Metaboloma/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Adulto , Idoso , Animais , Antígenos Transformantes de Poliomavirus/genética , Meios de Cultivo Condicionados , Feminino , Glicólise/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Receptores de Lipopolissacarídeos/análise , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/farmacologia , Quimera por Radiação , Serina-Treonina Quinases TOR/fisiologia , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/química , Carga Tumoral
12.
Front Immunol ; 11: 598532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414786

RESUMO

The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Quimiocinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células Estromais/metabolismo , Microambiente Tumoral , Animais , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Gerenciamento Clínico , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Humanos , Imunidade Inata , Terapia de Alvo Molecular , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/etiologia , Neoplasias/mortalidade , Células Estromais/patologia , Microambiente Tumoral/imunologia
13.
Cell Death Dis ; 11(9): 774, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943608

RESUMO

Triple-negative breast cancer (TNBC), defined as loss of estrogen, progesterone, and Her2 receptors, is a subtype of highly aggressive breast cancer with worse prognosis and poor survival rate. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine aberrantly expressed in many solid tumors and known to promote tumor progression and metastasis. However, its role in TNBC progression and metastasis is unexplored. Here we have shown that in TNBC patients, MIF expression was significantly enriched in the tumor compared to adjacent normal tissue. Using publically available patient datasets, we showed that MIF overexpression correlates with worse survival in TNBC compared to other hormonal status. Orthotopic implantation of TNBC cells into MIF knockout mice showed reduced tumor growth compared to wild-type mice. In addition, we have shown that MIF downregulation inhibits TNBC growth and progression in a syngeneic mouse model. We further showed that CPSI-1306, a small-molecule MIF inhibitor, inhibits the growth of TNBC cells in vitro. Mechanistic studies revealed that CPSI-1306 induces intrinsic apoptosis by alteration in mitochondrial membrane potential, cytochrome c (Cyt c) release, and activation of different caspases. In addition, CPSI-1306 inhibits the activation of cell survival and proliferation-related molecules. CPSI-1306 treatment also reduced the tumor growth and metastasis in orthotopic mouse models of mammary carcinoma. CPSI-1306 treatment of tumor-bearing mice significantly inhibited TNBC growth and pulmonary metastasis in a dose-dependent manner. Histological analysis of xenograft tumors revealed a higher number of apoptotic cells in CPSI-1306-treated tumors compared to vehicle controls. Our studies, for the first time, show that MIF overexpression in TNBC enhances growth and metastasis. Taken together, our results indicate that using small molecular weight MIF inhibitors could be a promising strategy to inhibit TNBC progression and metastasis.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Caspases/metabolismo , Movimento Celular , Sobrevivência Celular , Citocromos c/metabolismo , Progressão da Doença , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas In Vitro , Inflamação , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Morfolinas/farmacologia , Metástase Neoplásica , Transplante de Neoplasias , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Cicatrização
14.
BJU Int ; 104(6): 867-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19338536

RESUMO

OBJECTIVE: To investigate the association of tumour necrosis factor-alpha gene (TNF-alpha) polymorphisms T-1031C, C-863A, and C-857T with bladder cancer risk and recurrence after bacille Calmette-Guérin (BCG) immunotherapy, as TNF-alpha regulates inflammatory process influencing bladder cancer susceptibility and outcome of BCG immunotherapy. PATIENTS AND METHODS: In all, 220 patients with bladder cancer and 206 controls were recruited. Genotyping was done using allele specific-polymerase chain reaction. RESULTS: A T-1031C, CC genotype and haplotype -1031C/-863C/-857T showed enhanced susceptibility to bladder cancer, with an odds ratio (OR) of 2.23 and 95% confidence interval (CI) of 1.17-4.26; and an OR of 6.05 and 95%CI of 2.46-14.90, respectively. A T-1031C, CC genotype had a reduced risk of recurrence after BCG treatment (hazard ratio 0.38, 95%CI 0.14-0.98). CONCLUSION: The present data suggests that T-1031C (CC) genotype and C/C/T haplotype may confer risk for bladder cancer, moreover T-1031C (CC) decreased the risk of recurrence after BCG immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Vacina BCG/uso terapêutico , Recidiva Local de Neoplasia/genética , Fator de Necrose Tumoral alfa/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Idoso , Carcinoma de Células de Transição/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo Genético/genética , Fatores de Risco , Resultado do Tratamento
15.
Biomarkers ; 14(4): 213-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19489682

RESUMO

The association of interleukin-1beta (IL-1B) -511C > T and IL-1 receptor antagonist (IL-1RN) VNTR, transforming growth factor-beta (TGF-B1) +28C > T and interferon-gamma (IFN-G) + 874T>A polymorphisms with bladder cancer (CaB) susceptibility and risk of recurrence in Bacillus Calmette-Guérin (BCG)-treated patients was analyzed in 287 controls and 213 CaB patients (73 BCG treated). Increased risk was observed with the IL-1RN*2 allele (odds ratio (OR) 5.01) and the IFN-G +874 A allele (OR 1.78). TGF-B TT and IFN-G +874 A carriers were associated with reduced (hazard ratio (HR) 0.37) and enhanced (HR 2.24) risk of recurrence after BCG immunotherapy, respectively. The study suggests that cytokine gene variants may modulate CaB susceptibility and risk of recurrence after BCG immunotherapy.


Assuntos
Vacina BCG/uso terapêutico , Interferon gama/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1beta/genética , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta/genética , Neoplasias da Bexiga Urinária/genética , Idoso , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Recidiva , Risco , Neoplasias da Bexiga Urinária/tratamento farmacológico
16.
Commun Biol ; 2: 303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428691

RESUMO

Interactions between cells and their environment influence key physiologic processes such as their propensity to migrate. However, directed migration controlled by extrinsically applied electrical signals is poorly understood. Using a novel microfluidic platform, we found that metastatic breast cancer cells sense and respond to the net direction of weak (∼100 µV cm-1), asymmetric, non-contact induced Electric Fields (iEFs). iEFs inhibited EGFR (Epidermal Growth Factor Receptor) activation, prevented formation of actin-rich filopodia, and hindered the motility of EGF-treated breast cancer cells. The directional effects of iEFs were nullified by inhibition of Akt phosphorylation. Moreover, iEFs in combination with Akt inhibitor reduced EGF-promoted motility below the level of untreated controls. These results represent a step towards isolating the coupling mechanism between cell motility and iEFs, provide valuable insights into how iEFs target multiple diverging cancer cell signaling mechanisms, and demonstrate that electrical signals are a fundamental regulator of cancer cell migration.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Campos Eletromagnéticos , Actinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Metástase Neoplásica , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Oncogene ; 37(32): 4428-4442, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720724

RESUMO

The chemokine CXCL12 has been shown to regulate breast tumor growth, however, its mechanism in initiating distant metastasis is not well understood. Here, we generated a novel conditional allele of Cxcl12 in mice and used a fibroblast-specific Cre transgene along with various mammary tumor models to evaluate CXCL12 function in the breast cancer metastasis. Ablation of CXCL12 in stromal fibroblasts of mice significantly delayed the time to tumor onset and inhibited distant metastasis in different mouse models. Elucidation of mechanisms using in vitro and in vivo model systems revealed that CXCL12 enhances tumor cell intravasation by increasing vascular permeability and expansion of a leaky tumor vasculature. Furthermore, our studies revealed CXCL12 enhances permeability by recruiting endothelial precursor cells and decreasing endothelial tight junction and adherence junction proteins. High expression of stromal CXCL12 in large cohort of breast cancer patients was directly correlated to blood vessel density and inversely correlated to recurrence and overall patient survival. In addition, our analysis revealed that stromal CXCL12 levels in combination with number of CD31+ blood vessels confers poorer patient survival compared to individual protein level. However, no correlation was observed between epithelial CXCL12 and patient survival or blood vessel density. Our findings describe the novel interactions between fibroblasts-derived CXCL12 and endothelial cells in facilitating tumor cell intrvasation, leading to distant metastasis. Overall, our studies indicate that cross-talk between fibroblast-derived CXCL12 and endothelial cells could be used as novel biomarker and strategy for developing tumor microenvironment based therapies against aggressive and metastatic breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CXCL12/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Invasividade Neoplásica/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Neoplasias Mamárias Animais , Camundongos , Camundongos Transgênicos , Metástase Neoplásica/patologia , Microambiente Tumoral/fisiologia
19.
Oncoimmunology ; 6(11): e1361088, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147627

RESUMO

Signal transducer and activator of transcription 1 (STAT1) mediates interferon gamma signaling which activates the expression of various genes related to apoptosis, inflammation, cell cycle and angiogenesis. Several experimental and clinical studies have investigated the role of STAT1 in primary tumor growth in breast cancer; however, its role in tumor metastasis remains to be determined. To determine the role of STAT1 in breast cancer metastasis, we analyzed growth and metastasis in WT or STAT1-/- mice orthotopically implanted with metastatic 4T1.2 cells. Primary tumor development was faster in STAT1-/- mice and these mice developed significantly bigger primary tumors and displayed more lung metastasis compared with WT counterparts. STAT1-/- mice showed elevated Ly6G+CD11b+ granulocytic MDSC infiltration in their primary tumors and spleens with concomitant upregulation of Mmp9 and Cxcl1 expression in tumors compared with WT counterparts. Blockade of IL-17A in primary tumor-bearing STAT1-/- mice suppressed accumulation of Ly6G+CD11b+ cells and markedly reduced lung metastasis. These data show that STAT1 is an important suppressor of primary breast tumor growth and metastasis. Importantly, we found anti-IL-17 treatment can rescue STAT1 deficient animals from developing exacerbated metastasis to the lungs which could be important for immunotherapies for immunocompromised breast cancer patients.

20.
Mol Oncol ; 10(2): 272-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26778715

RESUMO

Targeting tumor angiogenesis is a promising alternative strategy for improvement of breast cancer therapy. Robo4 (roundabout homolog 4) signaling has been shown to protect endothelial integrity during sepsis shock and arthritis, and inhibit Vascular Endothelial Growth Factor (VEGF) signaling during pathological angiogenesis of retinopathy, which indicates that Robo4 might be a potential target for angiogenesis in breast cancer. In this study, we used immune competent Robo4 knockout mouse model to show that endothelial Robo4 is important for suppressing breast cancer growth and metastasis. And this effect does not involve the function of Robo4 on hematopoietic stem cells. Robo4 inhibits breast cancer growth and metastasis by regulating tumor angiogenesis, endothelial leakage and tight junction protein zonula occludens protein-1 (ZO-1) downregulation. Treatment with SecinH3, a small molecule drug which deactivates ARF6 downstream of Robo4, can enhance Robo4 signaling and thus inhibit breast cancer growth and metastasis. SecinH3 mediated its effect by reducing tumor angiogenesis rather than directly affecting cancer cell proliferation. In conclusion, endothelial Robo4 signaling is important for suppressing breast cancer growth and metastasis, and it can be targeted (enhanced) by administrating a small molecular drug.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/metabolismo , Feminino , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular , Receptores Imunológicos/genética , Transdução de Sinais , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA