Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 22(2): 803-822, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562055

RESUMO

To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.


Assuntos
Artrópodes , Animais , Artrópodes/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Finlândia , Biblioteca Gênica
2.
Oecologia ; 162(2): 323-30, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19763627

RESUMO

Dispersal behaviour of animals in fragmented habitats has generated intensive theoretical attention but empirical data on the evolution of dispersal are still relatively scarce. Theory predicts reduced dispersal propensity in small and isolated habitat patches. We tested these predictions in the waterstrider Aquarius najas, a wingless species with special habitat demands. Flightlessness constrains insect dispersal and as a stream specialist A. najas cannot survive on still water. Lakes therefore represent a dispersal barrier for this species. We measured dispersal propensity of the waterstrider A. najas which originated from ten fragmented populations. In the experiment, we transplanted laboratory-grown individuals to the field. We did not find differences between sex in dispersal propensity. However, we found that waterstriders that originated from small and isolated patches moved less than individuals from large and more continuous habitats. This suggests that the cost of dispersal over hostile surrounding habitats may be high. We conclude that a low likelihood of dispersal in A. najas is an adaptation to small and isolated stream habitats.


Assuntos
Migração Animal , Meio Ambiente , Heterópteros/fisiologia , Adaptação Fisiológica , Animais , Feminino , Masculino , Fatores Sexuais , Movimentos da Água
4.
Oecologia ; 134(4): 587-95, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12647132

RESUMO

Four major hypotheses have been put forward to explain local species richness of commensal or parasitic species. The resource distribution hypothesis predicts that regionally widespread host species are able to support higher local species richness of commensals or parasites. On the other hand, the resource size hypothesis predicts that larger hosts can support more species than smaller hosts, and comparably, the resource abundance hypothesis predicts that hosts that offer more resources are able to support more species. Finally, the resource concentration hypothesis predicts that hosts that occur in high-density patches support higher species richness. In this study, we tested the first three of the above hypotheses with myrmecophilous beetles and their host ants. In addition to species richness of myrmecophilous beetles, we also applied the above hypotheses to explain the distribution of the beetles. Our data are exclusively based on an extensive literature survey. Myrmecophilous beetles live in naturally fragmented environments composed of host ant colonies and they are exclusively dependent on ants. We found that the distribution of the host ants and the colony size of the host ants had a positive effect on both the species richness and the distribution of myrmecophilous beetles. In the same way, we found that myrmecophilous beetle species that are generalists, i.e. have more than one host ant species, and thus have more abundant resources, were more widely distributed than specialist species. Thus, we found support for the hypothesis that resource distribution, resource size and resource abundance have an effect on species richness and on the distribution of species.


Assuntos
Besouros , Cadeia Alimentar , Animais , Formigas , Dieta , Meio Ambiente , Feminino , Masculino , Dinâmica Populacional
5.
Oecologia ; 137(4): 617-20, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14534781

RESUMO

Understanding the factors that underlie colonization success is crucial both for ecological theory and conservation practices. The most effective way to assess colonization ability is to introduce experimentally different sets of individuals in empty patches of suitable habitat and to monitor the outcome. We translocated mated female waterstriders, Aquarius najas, into 90 streams that were not currently inhabited by the species. We manipulated sizes of propagules (from 2 to 16 mated females) and numbers of origin populations (one or two). Three origin populations were genetically different from each other, but they were less than 150 km from the streams of translocation. The results demonstrate clearly that both the larger propagule size and the high number of source populations have positive effects on the probability of colonizing a new stream. Thus, in addition to the stochastic factors related to the propagule size it may be essential to consider also the diversity of genetic origin for colonization success.


Assuntos
Genética Populacional , Heterópteros , Animais , Meio Ambiente , Feminino , Finlândia , Heterópteros/genética , Heterópteros/crescimento & desenvolvimento , Dinâmica Populacional , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA