Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35898084

RESUMO

Agricultural and environmental monitoring programs often require labor-intensive inputs and substantial costs to manually gather data from remote field locations. Recent advances in the Internet of Things enable the construction of wireless sensor systems to automate these remote monitoring efforts. This paper presents the design of a modular system to serve as a research platform for outdoor sensor development and deployment. The advantages of this system include low power consumption (enabling solar charging), the use of commercially available electronic parts for lower-cost and scaled up deployments, and the flexibility to include internal electronics and external sensors, allowing novel applications. In addition to tracking environmental parameters, the modularity of this system brings the capability to measure other non-traditional elements. This capability is demonstrated with two different agri- and aquacultural field applications: tracking moth phenology and monitoring bivalve gaping. Collection of these signals in conjunction with environmental parameters could provide a holistic and context-aware data analysis. Preliminary experiments generated promising results, demonstrating the reliability of the system. Idle power consumption of 27.2 mW and 16.6 mW for the moth- and bivalve-tracking systems, respectively, coupled with 2.5 W solar cells allows for indefinite deployment in remote locations.


Assuntos
Agricultura , Pesquisa Interdisciplinar , Eletrônica , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 20(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371238

RESUMO

Photoplethysmography is an extensively-used, portable, and noninvasive technique for measuring vital parameters such as heart rate, respiration rate, and blood pressure. The deployment of this technology in veterinary medicine has been hindered by the challenges in effective transmission of light presented by the thick layer of skin and fur of the animal. We propose an injectable capsule system to circumvent these limitations by accessing the subcutaneous tissue to enable reliable signal acquisition even with lower light brightness. In addition to the reduction of power usage, the injection of the capsule offers a less invasive alternative to surgical implantation. Our current prototype combines two application-specific integrated circuits (ASICs) with a microcontroller and interfaces with a commercial light emitting diode (LED) and photodetector pair. These ASICs implement a signal-conditioning analog front end circuit and a frequency-shift keying (FSK) transmitter respectively. The small footprint of the ASICs is the key in the integration of the complete system inside a 40-mm long glass tube with an inner diameter of 4 mm, which enables its injection using a custom syringe similar to the ones used with microchip implants for animal identification. The recorded data is transferred wirelessly to a computer for post-processing by means of the integrated FSK transmitter and a software-defined radio. Our optimized LED duty cycle of 0.4% at a sampling rate of 200 Hz minimizes the contribution of the LED driver (only 0.8 mW including the front-end circuitry) to the total power consumption of the system. This will allow longer recording periods between the charging cycles of the batteries, which is critical given the very limited space inside the capsule. In this work, we demonstrate the wireless operation of the injectable system with a human subject holding the sensor between the fingers and the in vivo functionality of the subcutaneous sensing on a pilot study performed on anesthetized rat subjects.


Assuntos
Fotopletismografia/instrumentação , Fotopletismografia/veterinária , Próteses e Implantes , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio , Animais , Desenho de Equipamento , Projetos Piloto , Ratos , Telemetria
3.
IEEE Trans Biomed Circuits Syst ; 18(5): 1037-1049, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38437072

RESUMO

Utilizing injectable devices for monitoring animal health offers several advantages over traditional wearable devices, including improved signal-to-noise ratio (SNR) and enhanced immunity to motion artifacts. We present a wireless application-specific integrated circuit (ASIC) for injectable devices. The ASIC has multiple physiological sensing modalities including body temperature monitoring, electrocardiography (ECG), and photoplethysmography (PPG). The ASIC fabricated using the CMOS 180 nm process is sized to fit into an injectable microchip implant. The ASIC features a low-power design, drawing an average DC power of 155.3 µW, enabling the ASIC to be wirelessly powered through an inductive link. To capture the ECG signal, we designed the ECG analog frontend (AFE) with 0.3 Hz low cut-off frequency and 45-79 dB adjustable midband gain. To measure PPG, we employ an energy-efficient and safe switched-capacitor-based (SC) light emitting diode (LED) driver to illuminate an LED with milliampere-level current pulses. A SC integrator-based AFE converts the current of photodiode with a programmable transimpedance gain. A resistor-based Wheatstone Bridge (WhB) temperature sensor followed by an instrumentation amplifier (IA) provides 27-47 °C sensing range with 0.02 °C inaccuracy. Recorded physiological signals are sequentially sampled and quantized by a 10-bit analog-to-digital converter (ADC) with the successive approximation register (SAR) architecture. The SAR ADC features an energy-efficient switching scheme and achieves a 57.5 dB signal-to-noise-and-distortion ratio (SNDR) within 1 kHz bandwidth. Then, a back data telemetry transmits the baseband data via a backscatter scheme with intermediate-frequency assistance. The ASIC's overall functionality and performance has been evaluated through an in vivo experiment.


Assuntos
Eletrocardiografia , Fotopletismografia , Tecnologia sem Fio , Animais , Tecnologia sem Fio/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Eletrocardiografia/instrumentação , Fotopletismografia/instrumentação , Fotopletismografia/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Temperatura Corporal/fisiologia , Razão Sinal-Ruído , Dispositivos Eletrônicos Vestíveis
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7120-7123, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892742

RESUMO

A major bottleneck in the manufacturing process of a medical implant capable of biopotential measurements is the design and assembly of a conductive electrode interface. This paper presents the use of a novel 3D-printing process to integrate conductive metal surfaces on a low-temperature co-fired ceramic base to be deployed as electrodes for electrocardiography (ECG) implants for small animals. In order to fit the ECG sensing system within the size of an injectable microchip implant, the electronics along with a pin-type lithium-ion battery are inserted into a cylindrical glass tube with both ends sealed by these 3D printed composite electrode discs using biomedical epoxy. In the scope of this paper, we present a proof-of-concept in vivo experiment for recording ECG from an avian animal model under local anesthesia to verify the electrode performance. Simultaneous recording with a commercial device validated the measurements, demonstrating promising accuracy in heart rate and breathing rate monitoring. This novel technology could open avenues for the mass manufacturing of miniaturized ECG implants.Clinical relevance- A novel manufacturing process and an implantable system are presented for continuous physiological monitoring of animals to be used by veterinarians, animal scientists, and biomedical researchers with potential future applications in human health monitoring.


Assuntos
Impressão Tridimensional , Próteses e Implantes , Animais , Condutividade Elétrica , Eletrodos , Desenho de Equipamento , Humanos
5.
IEEE Trans Biomed Circuits Syst ; 13(5): 825-834, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31217129

RESUMO

Obtaining physiological data from animals in a non-obtrusive and continuous manner is important to veterinary science. This paper demonstrates the design and deployment of a miniaturized capsule-based system for subdermal injection to provide real-time and continuous heart-rate, movement, and core-body-temperature measurements. The presented device incorporates sensors for photoplethysmography, motion detection, and temperature measurements. A bluetooth-low-energy enabled microcontroller configures the sensors, digitizes the sensor information, and wirelessly connects with external devices. The device is powered by a CR425 battery for this paper, and various other battery solutions are available based upon the use case. The design uses only commercially available integrated circuits in order to reduce the development cost and be modular. The encapsulation is a combination of medical epoxy and poly(methyl methacrylate) that fits within a 6-gauge hypodermic needle. The preliminary evaluation of the device included an in vitro assessment of its thermal response and measurement accuracy, the impact of one-month implantation on surrounding tissue, the power consumption with duty cycling of various sensors, and a measurement of physiological signals in a rat and a chicken. Having a form factor and implantation method similar to existing devices for animals, this novel system is a useful platform for both scientists and veterinarians to better study a diverse range of animals.


Assuntos
Acelerometria , Fotopletismografia , Termografia , Tecnologia sem Fio/instrumentação , Acelerometria/instrumentação , Acelerometria/métodos , Animais , Galinhas , Movimento , Agulhas , Fotopletismografia/instrumentação , Fotopletismografia/métodos , Ratos , Termografia/instrumentação , Termografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA