Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(47): 19444-9, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23115331

RESUMO

Painful peripheral neuropathy often occurs without apparent underlying cause. Gain-of-function variants of sodium channel Na(v)1.7 have recently been found in ∼30% of cases of idiopathic painful small-fiber neuropathy. Here, we describe mutations in Na(v)1.8, another sodium channel that is specifically expressed in dorsal root ganglion (DRG) neurons and peripheral nerve axons, in patients with painful neuropathy. Seven Na(v)1.8 mutations were identified in 9 subjects within a series of 104 patients with painful predominantly small-fiber neuropathy. Three mutations met criteria for potential pathogenicity based on predictive algorithms and were assessed by voltage and current clamp. Functional profiling showed that two of these three Na(v)1.8 mutations enhance the channel's response to depolarization and produce hyperexcitability in DRG neurons. These observations suggest that mutations of Na(v)1.8 contribute to painful peripheral neuropathy.


Assuntos
Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Neuralgia/genética , Adulto , Idoso , Substituição de Aminoácidos/genética , Animais , Análise Mutacional de DNA , Fenômenos Eletrofisiológicos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Humanos , Masculino , Camundongos , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Neuralgia/fisiopatologia
2.
Glia ; 62(12): 2080-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25043721

RESUMO

Microglia are motile resident immune cells of the central nervous system (CNS) that continuously explore their territories for threats to tissue homeostasis. Following CNS insult (e.g., cellular injury, infection, or ischemia), microglia respond to signals such as ATP, transform into an activated state, and migrate towards the threat. Directed migration is a complex and highly-coordinated process involving multiple intersecting cellular pathways, including signal transduction, membrane adhesion and retraction, cellular polarization, and rearrangement of cytoskeletal elements. We previously demonstrated that the activity of sodium channels contributes to ATP-induced migration of microglia. Here we show that TTX-sensitive sodium channels, specifically NaV 1.6, participate in an initial event in the migratory process, i.e., the formation in ATP-stimulated microglia of polymerized actin-rich membrane protrusions, lamellipodia, containing accumulations of Rac1 and phosphorylated ERK1/2. We also examined Ca(2+) transients in microglia and found that blockade of sodium channels with TTX produced a downward shift in the level of [Ca(2+) ]i during the delayed, slower recovery of [Ca(2+) ]i following ATP stimulation. These observations demonstrate a modulatory role of sodium channels on Ca(2+) transients in microglia that are likely to affect down-stream signaling cascades. Consistent with these observations, we demonstrate that ATP-induced microglial migration is mediated via Rac1 and ERK1/2, but not p38α/ß and JNK, dependent pathways, and that activation of both Rac1 and ERK1/2 is modulated by sodium channel activity. Our results provide evidence for a direct link between sodium channel activity and modulation of Rac1 and ERK1/2 activation in ATP-stimulated microglia, possibly by regulating Ca(2+) transients.


Assuntos
Trifosfato de Adenosina/farmacologia , Microglia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Pseudópodes/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Pseudópodes/efeitos dos fármacos , Pseudópodes/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia
3.
Ann Neurol ; 71(1): 26-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21698661

RESUMO

OBJECTIVE: Small nerve fiber neuropathy (SFN) often occurs without apparent cause, but no systematic genetic studies have been performed in patients with idiopathic SFN (I-SFN). We sought to identify a genetic basis for I-SFN by screening patients with biopsy-confirmed idiopathic SFN for mutations in the SCN9A gene, encoding voltage-gated sodium channel Na(V)1.7, which is preferentially expressed in small diameter peripheral axons. METHODS: Patients referred with possible I-SFN, who met the criteria of ≥2 SFN-related symptoms, normal strength, tendon reflexes, vibration sense, and nerve conduction studies, and reduced intraepidermal nerve fiber density (IENFD) plus abnormal quantitative sensory testing (QST) and no underlying etiology for SFN, were assessed clinically and by screening of SCN9A for mutations and functional analyses. RESULTS: Twenty-eight patients who met stringent criteria for I-SFN including abnormal IENFD and QST underwent SCN9A gene analyses. Of these 28 patients with biopsy-confirmed I-SFN, 8 were found to carry novel mutations in SCN9A. Functional analysis revealed multiple gain of function changes in the mutant channels; each of the mutations rendered dorsal root ganglion neurons hyperexcitable. INTERPRETATION: We show for the first time that gain of function mutations in sodium channel Na(V)1.7, which render dorsal root ganglion neurons hyperexcitable, are present in a substantial proportion (28.6%; 8 of 28) of patients meeting strict criteria for I-SFN. These results point to a broader role of Na(V)1.7 mutations in neurological disease than previously considered from studies on rare genetic syndromes, and suggest an etiological basis for I-SFN, whereby expression of gain of function mutant sodium channels in small diameter peripheral axons may cause these fibers to degenerate.


Assuntos
Mutação de Sentido Incorreto/genética , Polineuropatias/diagnóstico , Polineuropatias/genética , Canais de Sódio/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.7 , Inquéritos e Questionários , Adulto Jovem
4.
J Neurosci ; 30(5): 1637-47, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130174

RESUMO

Na(v)1.7 sodium channels can amplify weak stimuli in neurons and act as threshold channels for firing action potentials. Neurotrophic factors and pro-nociceptive cytokines that are released during development and under pathological conditions activate mitogen-activated protein kinases (MAPKs). Previous studies have shown that MAPKs can transduce developmental or pathological signals by regulating transcription factors that initiate a gene expression response, a long-term effect, and directly modulate neuronal ion channels including sodium channels, thus acutely regulating dorsal root ganglion (DRG) neuron excitability. For example, neurotrophic growth factor activates (phosphorylates) ERK1/2 MAPK (pERK1/2) in DRG neurons, an effect that has been implicated in injury-induced hyperalgesia. However, the acute effects of pERK1/2 on sodium channels are not known. We have shown previously that activated p38 MAPK (pp38) directly phosphorylates Na(v)1.6 and Na(v)1.8 sodium channels and regulates their current densities without altering their gating properties. We now report that acute inhibition of pERK1/2 regulates resting membrane potential and firing properties of DRG neurons. We also show that pERK1 phosphorylates specific residues within L1 of Na(v)1.7, inhibition of pERK1/2 causes a depolarizing shift of activation and fast inactivation of Na(v)1.7 without altering current density, and mutation of these L1 phosphoacceptor sites abrogates the effect of pERK1/2 on this channel. Together, these data are consistent with direct phosphorylation and modulation of Na(v)1.7 by pERK1/2, which unlike the modulation of Na(v)1.6 and Na(v)1.8 by pp38, regulates gating properties of this channel but not its current density and contributes to the effects of MAPKs on DRG neuron excitability.


Assuntos
Ativação do Canal Iônico/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Gânglios Espinais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fator de Crescimento Neural/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fosforilação , Ratos , Ratos Sprague-Dawley
5.
Mol Pain ; 7: 32, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21569247

RESUMO

BACKGROUND: Voltage-gated sodium channel Nav1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic neurons within the peripheral nervous system. Homozygous or compound heterozygous loss-of-function mutations in SCN9A, the gene which encodes Nav1.7, cause congenital insensitivity to pain (CIP) accompanied by anosmia. Global knock-out of Nav1.7 in mice is neonatal lethal reportedly from starvation, suggesting anosmia. These findings led us to hypothesize that Nav1.7 is the main sodium channel in the peripheral olfactory sensory neurons (OSN, also known as olfactory receptor neurons). METHODS: We used multiplex PCR-restriction enzyme polymorphism, in situ hybridization and immunohistochemistry to determine the identity of sodium channels in rodent OSNs. RESULTS: We show here that Nav1.7 is the predominant sodium channel transcript, with low abundance of other sodium channel transcripts, in olfactory epithelium from rat and mouse. Our in situ hybridization data show that Nav1.7 transcripts are present in rat OSNs. Immunostaining of Nav1.7 and Nav1.6 channels in rat shows a complementary accumulation pattern with Nav1.7 in peripheral presynaptic OSN axons, and Nav1.6 primarily in postsynaptic cells and their dendrites in the glomeruli of the olfactory bulb within the central nervous system. CONCLUSIONS: Our data show that Nav1.7 is the dominant sodium channel in rat and mouse OSN, and may explain anosmia in Nav1.7 null mouse and patients with Nav1.7-related CIP.


Assuntos
Mucosa Olfatória/inervação , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Canais de Sódio/metabolismo , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Hibridização In Situ , Ativação do Canal Iônico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.6 , Canal de Sódio Disparado por Voltagem NAV1.7 , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Sódio/genética
6.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33188006

RESUMO

Central amygdala (CeA) neurons expressing protein kinase Cδ (PKCδ+) or somatostatin (Som+) differentially modulate diverse behaviors. The underlying features supporting cell-type-specific function in the CeA, however, remain unknown. Using whole-cell patch-clamp electrophysiology in acute mouse brain slices and biocytin-based neuronal reconstructions, we demonstrate that neuronal morphology and relative excitability are two distinguishing features between Som+ and PKCδ+ neurons in the laterocapsular subdivision of the CeA (CeLC). Som+ neurons, for example, are more excitable, compact, and with more complex dendritic arborizations than PKCδ+ neurons. Cell size, intrinsic membrane properties, and anatomic localization were further shown to correlate with cell-type-specific differences in excitability. Lastly, in the context of neuropathic pain, we show a shift in the excitability equilibrium between PKCδ+ and Som+ neurons, suggesting that imbalances in the relative output of these cells underlie maladaptive changes in behaviors. Together, our results identify fundamentally important distinguishing features of PKCδ+ and Som+ cells that support cell-type-specific function in the CeA.


Assuntos
Núcleo Central da Amígdala , Neuralgia , Animais , Núcleo Central da Amígdala/metabolismo , Camundongos , Neurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Somatostatina/metabolismo
7.
Cell Rep ; 29(2): 332-346.e5, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597095

RESUMO

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.


Assuntos
Núcleo Central da Amígdala/fisiopatologia , Neuralgia/fisiopatologia , Animais , Ativação Enzimática , Feminino , Hipersensibilidade/complicações , Hipersensibilidade/fisiopatologia , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Tecido Nervoso/lesões , Neuralgia/complicações , Neurônios/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Temperatura , Tato
8.
Pain ; 154(10): 2216-2226, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23867734

RESUMO

UNLABELLED: Growth factors such as nerve growth factor and glial cell line-derived neurotrophic factor are known to induce pain sensitization. However, a plethora of other growth factors is released during inflammation and tissue regeneration, and many of them are essential for wound healing. Which wound-healing factors also alter the sensitivity of nociceptive neurons is not well known. We studied the wound-healing factor, basic fibroblast growth factor (bFGF), for its role in pain sensitization. Reverse transcription polymerase chain reaction showed that the receptor of bFGF, FGFR1, is expressed in lumbar rat dorsal root ganglia (DRG). We demonstrated presence of FGFR1 protein in DRG neurons by a recently introduced quantitative automated immunofluorescent microscopic technique. FGFR1 was expressed in all lumbar DRG neurons as quantified by mixture modeling. Corroborating the mRNA and protein expression data, bFGF induced Erk1/2 phosphorylation in nociceptive neurons, which could be blocked by inhibition of FGF receptors. Furthermore, bFGF activated Erk1/2 in a dose- and time-dependent manner. Using single-cell electrophysiological recordings, we found that bFGF treatment of DRG neurons increased the current-density of NaV1.8 channels. Erk1/2 inhibitors abrogated this increase. Importantly, intradermal injection of bFGF in rats induced Erk1/2-dependent mechanical hyperalgesia. PERSPECTIVE: Analyzing intracellular signaling dynamics in nociceptive neurons has proven to be a powerful approach to identify novel modulators of pain. In addition to describing a new sensitizing factor, our findings indicate the potential to investigate wound-healing factors for their role in nociception.


Assuntos
Fator 2 de Crescimento de Fibroblastos/toxicidade , Gânglios Espinais/fisiopatologia , Hiperalgesia/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Cicatrização/fisiologia , Animais , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/biossíntese , Cicatrização/efeitos dos fármacos
9.
Brain Res ; 1529: 165-77, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23850641

RESUMO

Sodium channel NaV1.7 is preferentially expressed in dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function NaV1.7 mutations/variants have been identified in the painful disorders inherited erythromelalgia and small-fiber neuropathy (SFN). DRG neurons transfected with these channel variants display depolarized resting potential, reduced current-threshold, increased firing-frequency and spontaneous firing. Whether the depolarizing shift in resting potential and enhanced spontaneous firing are due to persistent activity of variant channels, or to compensatory changes in other conductance(s) in response to expression of the variant channel, as shown in model systems, has not been studied. We examined the effect of wild-type NaV1.7 and a NaV1.7 mutant channel, D623N, associated with SFN, on resting potential and membrane potential during interspike intervals in DRG neurons. Resting potential in DRG neurons expressing D623N was depolarized compared to neurons expressing WT-NaV1.7. Exposure to TTX hyperpolarized resting potential by 7mV, increased current-threshold, decreased firing-frequency, and reduced NMDG-induced-hyperpolarization in DRG neurons expressing D623N. To assess the contribution of depolarized resting potential to DRG neuron excitability, we mimicked the mutant channel's depolarizing effect by current injection to produce equivalent depolarization; the depolarization decreased current threshold and increased firing-frequency. Voltage-clamp using ramp or repetitive action potentials as commands showed that D623N channels enhance the TTX-sensitive inward current, persistent at subthreshold membrane voltages, as predicted by a Hodgkin-Huxley model. Our results demonstrate that a variant of NaV1.7 associated with painful neuropathy depolarizes resting membrane potential and produces an enhanced inward current during interspike intervals, thereby contributing to DRG neuron hyperexcitability.


Assuntos
Gânglios Espinais/citologia , Potenciais da Membrana/genética , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neurônios/fisiologia , Animais , Asparagina/genética , Ácido Aspártico/genética , Biofísica , Células Cultivadas , Simulação por Computador , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Potenciais da Membrana/efeitos dos fármacos , Modelos Neurológicos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Transfecção
10.
Pain ; 153(10): 2017-2030, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22703890

RESUMO

A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage-gated sodium channel Na(v)1.8 has been reported to be preferentially expressed in small-diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Na(v)1.8-Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre-mediated recombination occurs in these animals has not been resolved, and whether expression of Na(v)1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Na(v)1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Na(v)1.8-Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (∼40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons' central and peripheral projections revealed that Na(v)1.8-Cre is not restricted to nociceptors but is also expressed by at least 2 types of low-threshold mechanoreceptors essential for touch sensation, including those with C and Aß fibers. Our results indicate that Na(v)1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Na(v)1.8-Cre-driven conditional knockout mice.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptores/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Distribuição Tecidual
11.
Eur J Pain ; 14(9): 944-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20385509

RESUMO

Dominant gain-of-function mutations that hyperpolarize activation of the Na(v)1.7 sodium channel have been linked to inherited erythromelalgia (IEM), a disorder characterized by severe pain and redness in the feet and hands in response to mild warmth. Pharmacotherapy remains largely ineffective for IEM patients with cooling and avoidance of triggers being the most reliable methods to relieve pain. We now report a 5 year old patient with pain precipitated by warmth, together with redness in her hands and feet. Her pain episodes were first reported at 12 months, and by the age of 15-16 months were triggered by sitting as well as heat. Pain has been severe, inducing self-mutilation, with limited relief from drug treatment. Our analysis of the patient's genomic DNA identified a novel Na(v)1.7 mutation which replaces isoleucine 234 by threonine (I234T) within domain I/S4-S5 linker. Whole-cell voltage-clamp analysis shows a I234T-induced shift of -18 mV in the voltage-dependence of activation, accelerated time-to-peak, slowed deactivation and enhanced responses to slow ramp depolarizations, together with a -21 mV shift in the voltage-dependence of slow-inactivation. Our data show that I234T induces the largest activation shift for Na(v)1.7 mutations reported thus far. Although enhanced slow-inactivation may attenuate the gain-of-function of the I234T mutation, the shift in activation appears to be dominant, and is consistent with the severe pain symptoms reported in this patient.


Assuntos
Dor Intratável/genética , Dor Intratável/metabolismo , Índice de Gravidade de Doença , Canais de Sódio/genética , Substituição de Aminoácidos/genética , Pré-Escolar , Eritromelalgia/diagnóstico , Eritromelalgia/genética , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Isoleucina/genética , Canal de Sódio Disparado por Voltagem NAV1.7 , Dor Intratável/diagnóstico , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA