Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 11(10): 1334-46, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20604902

RESUMO

Within the endomembrane system of eukaryotic cells, multisubunit tethering complexes together with their corresponding Rab-GTPases coordinate vesicle tethering and fusion. Here, we present evidence that two homologous hexameric tethering complexes, the endosomal CORVET (Class C core vacuole/endosome transport) and the vacuolar HOPS (homotypic vacuole fusion and protein sorting) complex, have similar subunit topologies. Both complexes contain two Rab-binding proteins at one end, and the Sec1/Munc18-like Vps33 at the opposite side, suggesting a model on membrane bridging via Rab-GTP and SNARE binding. In agreement, HOPS activity can be reconstituted using purified subcomplexes containing the Rab and Vps33 module, but requires all six subunits for activity. At the center of HOPS and CORVET, the class C proteins Vps11 and Vps18 connect the two parts, and Vps11 binds both HOPS Vps39 and CORVET Vps3 via the same binding site. As HOPS Vps39 is also found at endosomes, our data thus suggest that these tethering complexes follow defined but distinct assembly pathways, and may undergo transition by simple subunit interchange.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/química , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/química
2.
FEBS J ; 278(17): 3041-53, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21711450

RESUMO

In Bacteria and Archaea, high-affinity potassium uptake is mediated by the ATP-driven KdpFABC complex. On the basis of the biochemical properties of the ATP-hydrolyzing subunit KdpB, the transport complex is classified as type IA P-type ATPase. However, the KdpA subunit, which promotes K(+) transport, clearly resembles a potassium channel, such that the KdpFABC complex represents a chimera of ion pumps and ion channels. In the present study, we demonstrate that the blending of these two groups of transporters in KdpFABC also entails a nucleotide-binding mechanism in which the KdpC subunit acts as a catalytic chaperone. This mechanism is found neither in P-type ATPases nor in ion channels, although parallels are found in ABC transporters. In the latter, the ATP nucleotide is coordinated by the LSGGQ signature motif via double hydrogen bonds at a conserved glutamine residue, which is also present in KdpC. High-affinity nucleotide binding to the KdpFABC complex was dependent on the presence of this conserved glutamine residue in KdpC. In addition, both ATP binding to KdpC and ATP hydrolysis activity of KdpFABC were sensitive to the accessibility, presence or absence of the hydroxyl groups at the ribose moiety of the nucleotide. Furthermore, the KdpC subunit was shown to interact with the nucleotide-binding loop of KdpB in an ATP-dependent manner around the ATP-binding pocket, thereby increasing the ATP-binding affinity by the formation of a transient KdpB/KdpC/ATP ternary complex.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Biocatálise , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamina/metabolismo , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
3.
Mol Biol Cell ; 20(24): 5276-89, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828734

RESUMO

Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypic fusion at the vacuole, whereas the recently identified homologous CORVET complex acts at the level of late endosomes. Here, we have further functionally characterized the CORVET-specific subunit Vps8 and its relationship to the remaining subunits using an in vivo approach that allows the monitoring of late endosome biogenesis. In particular, our results indicate that Vps8 interacts and cooperates with the activated Rab5 homolog Vps21 to induce the clustering of late endosomal membranes, indicating that Vps8 is the effector subunit of the CORVET complex. This clustering, however, requires Vps3, Vps16, and Vps33 but not the remaining CORVET subunits. These data thus suggest that the CORVET complex is built of subunits with distinct activities and potentially, their sequential assembly could regulate tethering and successive fusion at the late endosomes.


Assuntos
Endossomos/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Transporte Biológico , Compartimento Celular , Endossomos/ultraestrutura , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/metabolismo , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura
4.
Biochemistry ; 45(36): 11038-46, 2006 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16953591

RESUMO

P-Type ATPases catalyze the transport of cations across the cell envelope via site-specific hydrolysis of ATP. Modulation of enzyme activity by additional small subunits and/or a second regulatory nucleotide binding site is still a subject of discussion. In the K(+)-transporting KdpFABC complex of Escherichia coli, KdpB resembles the catalytic P-type ATPase subunit, but ATP binding also occurs in the essential but noncatalytic subunit, KdpC. For further characterization, the soluble portion of KdpC (KdpC(sol), residues Asn39-Glu190) was synthesized separately and purified to homogeneity via affinity and size exclusion chromatography. Protein integrity was confirmed by N-terminal sequencing, mass spectrometry, and circular dichroism spectroscopy, which revealed an alpha-helical content of 44% together with an 8% beta-sheet conformation consistent with the values deduced from the primary sequence. The overall protein structure was not affected by the addition of ATP to a concentration of up to 2 mM. In contrast, labeling of KdpC(sol) with the photoreactive ATP analogue 8-azido-ATP resulted in the specific incorporation of one molecule of 8-azido-ATP per peptide. No labeling could be observed upon denaturation of the protein with 0.2% sodium dodecyl sulfate, which suggests the presence of a structured nucleotide binding site. Labeling could be inhibited by preincubation with either ATP, ADP, AMP, GTP, or CTP, thus demonstrating a low specificity for nucleotides. Following 8-azido-ATP labeling and tryptic digestion of KdpC(sol), mass spectrometry showed that ATP binding occurred within the Val144-Lys161 peptide located within the C-terminal part of KdpC, thereby further demonstrating a defined nucleotide binding site. On the basis of these findings, a cooperative model in which the soluble part of KdpC activates catalysis of KdpB is suggested.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Azidas/química , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Dicroísmo Circular , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Engenharia de Proteínas/métodos , Estrutura Secundária de Proteína , Solubilidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA