Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(1): 59, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059893

RESUMO

Drying of wet granules in a fluidized bed dryer is an important part of the pharmaceutical tablet manufacturing process. Complicated gas-solid flow patterns appear in the fluidized bed dryer, and interphase momentum, heat, and mass transfer happen during the drying process. A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer. The evaporation of water from the surfaces of the particles and the cohesion force between the particles due to the formation of liquid bridges between the particles were also considered in this model. The model was validated by comparing the model predictions with the experimental data available from the literatures. The validated model was used to investigate the drying kinetics of the wet granules in the fluidized bed dryer. The results from numerical simulations showed that the dynamics and rate of increase of temperature of wet particles were considerably different from those of dry particles. Finally, the model was used to investigate the effects of inlet air velocity and inlet air temperature on the drying process. The model predicted increase in drying rate with the increase of inlet air velocity and inlet air temperature. This model can help not only to understand the multiphase multicomponent flow in fluidized bed dryer but also to optimize the drying process in the fluidized bed dryer.


Assuntos
Dessecação , Hidrodinâmica , Simulação por Computador , Comprimidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA