Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 25(1): 150-160, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445545

RESUMO

Fish suffer from starvation due to environmental risks such as extreme weather in the wild and due to insufficient feedings in farms. Nutrient problems from short-term or long-term starvation conditions can result in stress-related health problems for fish. Yellowfin seabream (Acanthopagrus latus) is an important marine economic fish in China. Understanding the molecular responses to starvation stress is vital for propagation and culturing yellowfin seabream. In this study, the transcriptome and genome-wide DNA methylation levels in the livers of yellowfin seabream under 14-days starvation stress were analyzed. One hundred sixty differentially expressed genes (DEGs) by RNA-Seq analysis and 737 differentially methylated-related genes by whole genome bisulfite sequencing analysis were identified. GO and KEGG pathway enrichment analysis found that energy metabolism-related pathways such as glucose metabolism and lipid metabolism were in response to starvation. Using bisulfite sequencing PCR, we confirmed the presence of CpG methylation differences within the regulatory region of a DEG ppargc1a in response to 14-days starvation stress. This study revealed the molecular responses of livers in response to starvation stress at the transcriptomic and whole genome DNA methylation levels in yellowfin seabream.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Transcriptoma , Metilação de DNA , Fígado/metabolismo
2.
Zool Res ; 43(2): 205-216, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35084126

RESUMO

Red tilapia ( Oreochromis spp .) is one of the most popular fish in China due to its bright red appearance, fast growth rate, and strong adaptability. Understanding the sex determination mechanisms is of vital importance for the selection of all-male lines to increase aquacultural production of red tilapia. In this research, the genetic architecture for sex from four mapping populations ( n=1 090) of red tilapia was analyzed by quantitative trait loci (QTL)-seq, linkage-based QTL mapping, and linkage disequilibrium (LD)-based genome-wide association studies. Two genome-wide significant QTL intervals associated with sex were identified on ChrLG1 (22.4-23.9 Mb) and ChrLG23 (32.0-35.9 Mb), respectively. The QTL on ChrLG1 was detected in family 1 (FAM1), FAM2, and FAM4, and the other QTL on ChrLG23 was detected in FAM3 and FAM4. Four microsatellite markers located within the QTL were successfully developed for marker-assisted selection. Interestingly, three ( lpp, sox14, and amh) of the 12 candidate genes located near or on the two QTL intervals were abundantly expressed in males, while the remaining genes were more highly expressed in females. Seven genes ( scly, ube3a, lpp, gpr17, oca2, cog4, and atp10a) were significantly differentially expressed between the male and female groups. Furthermore, LD block analysis suggested that a cluster of genes on ChrLG23 may participate in regulating sex development in red tilapia. Our study provides important information on the genetic architecture of sex in red tilapia and should facilitate further exploration of sex determination mechanisms in this species.


Assuntos
Locos de Características Quantitativas , Tilápia , Animais , Feminino , Estudos de Associação Genética/veterinária , Ligação Genética , Masculino , Tilápia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA