Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(51): 15457-61, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26515792

RESUMO

The ionothermal synthesis, structure, and magnetic susceptibility of a novel inorganic-organic hybrid material, imidazolium vanadium(III,IV) oxyfluoride [C3 H5 N2 ][V9 O6 F24 (H2 O)2 ] (ImVOF) are presented. The structure consists of inorganic vanadium oxyfluoride slabs with kagome layers of V(4+) S=${{ 1/2 }}$ ions separated by a mixed valence layer. These inorganic slabs are intercalated with imidazolium cations. Quinuclidinium (Q) and pyrazinium (Pyz) cations can also be incorporated into the hybrid structure type to give QVOF and PyzVOF analogues, respectively. The highly frustrated topology of the inorganic slabs, along with the quantum nature of the magnetism associated with V(4+) , means that these materials are excellent candidates to host exotic magnetic ground states, such as the highly sought quantum spin liquid. Magnetic susceptibility measurements of all samples suggest an absence of conventional long-range magnetic order down to 2 K despite considerable antiferromagnetic exchange.

2.
Materials (Basel) ; 14(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204769

RESUMO

Introducing redox-active moieties into an ionic liquid (IL) structure is an exciting and attractive approach that has received increasing interest over recent years for a various range of energy applications. The so-called redox-active ionic liquids (RAILs) provide a highly versatile platform to potentially create multifunctional electroactive materials. Ionic liquids are molten salts consisting of ionic species, often having a melting point lower than 100 °C. Such liquids are obtained by combining a bulky asymmetric organic cation and a small anion. Here, we report on the synthesis of a novel RAIL, namely 1-butyl-3-methylimidazolium hydroquinone sulfonate ((BMIM)(HQS)). (BMIM)(HQS) was synthesized in a two-step procedure, starting by the quaternization of methylimidazole using butylchloride to produce 1-butyl-3-methylimidazolium chloride ((BMIM)(Cl)), and followed by the anion exchange reaction, where the chloride anion is exchanged with hydroquinone sulfonate. The resulting product was characterized by 1H NMR, 13C NMR, FT-IR spectroscopy, themogravimetric analysis, and differential scanning calorimetry, and shows a high stability up to 340 °C. Its electrochemical behavior was investigated using cyclic voltammetry at different temperatures and its viscosity analysis was also performed at variable temperatures. The electrochemical response of the presented RAIL was found to be temperature dependent and diffusion controlled. Overall, our results demonstrated that (BMIM)(mix of HQS and HSQ) is redox active and possesses high stability and low volatility, leading to the employment of this RAIL without any additional supporting electrolyte or additives.

3.
Sci Rep ; 11(1): 13841, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226644

RESUMO

Anion exchange membranes (AEMs) are becoming increasingly common in electrochemical energy conversion and storage systems around the world (EES). Proton-/cation-exchange membranes (which conduct positive charged ions such as H+ or Na+) have historically been used in many devices such as fuel cells, electrolysers, and redox flow batteries. High capital costs and the use of noble metal catalysts are two of the current major disadvantages of polymer electrolyte membrane (PEM)-based systems. AEMs may be able to overcome the limitations of conventional PEMs. As a result, polymers with anion exchange properties have recently attracted a lot of attention due to their significant benefits in terms of transitioning from a highly acidic to an alkaline environment, high kinetics for oxygen reduction and fuel oxidation in an alkaline environment, and lower cost due to the use of non-precious metals. The aim of this research was to learn more about the development of a new AEM based on poly tetraarylphosphonium ionomers (pTAP), which has high ionic conductivity, alkaline stability, thermal stability, and good mechanical properties, making it a more cost-effective and stable alternative to conventional and commercial AEMs. A simple solution casting method was used to build novel anion exchange composite membranes with controlled thicknesses using the synthesized pTAP with polysulfone (PS). To ensure their suitability for use as an electrolyte in alkaline electrochemical systems, the composite membranes were characterized using FTIR, XRD, water uptake, ionic conductivity, and alkaline stability. At 40 °C, the PS/pTAP 40/60 percent membrane had a maximum ionic conductivity of 4.2 mS/cm. The thermal and mechanical stability of the composite membranes were also examined, with no substantial weight loss observed up to 150 °C. These findings pave the way for these membranes to be used in a wide variety of electrochemical applications.

4.
ACS Appl Mater Interfaces ; 13(38): 45935-45943, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533936

RESUMO

The deployment of alkaline anion exchange membranes (AEMs) in flow battery applications has the advantage of a low cationic species crossover rate. However, the alkaline stability conjugated to the low conductivity of hydroxide ions of anion exchange membranes (AEMs) still represents a major drawback for the large deployment of such technology. In this study, three types of tetraarylpolyphosphonium (pTAP)-based copolymers (namely, CP1, CP2, and CP3) are synthesized and blended with chitosan and polyvinylidene fluoride (PVDF) for the fabrication of AEMs. Chitosan, a green biopolymer, was employed as a blend to enhance the water uptake of the base ionomer matrix. It is proposed that the abundancy of hydroxyl groups in chitosan improves considerably the ionic conductivity, water transport, and ion selectivity of the membrane, together with facilitating the dispersion of the chitosan in the pTAP copolymer matrix. The purpose of blending PVDF is instead to provide stable mechanical strength to the composite blend. The chemical, mechanical, and thermal stabilities of the three fabricated composite-blend membranes (i.e., CM1, CM2, and CM3) were characterized. All the membranes exhibited a high water retaining capacity of up to 36.26% (recorded for CM2) along with a hydroxyl ion conductivity of 17.39 mS cm-1. Due to the strong interactions between pTAP copolymers, chitosan, and PVDF polymers (confirmed also by Fourier transform infrared spectroscopy), the studied anion exchange membranes are able to retain up to 97% of the original OH conductivity after 1 M KOH treatment at room temperature for 100 h. The three membranes, namely, CM1, CM2, and CM3, have vanadium ion permeabilities measured at 20 °C of 1.775 × 10-8, 1.718 × 10-8, and 1.648 × 10-8 cm2/s, respectively, which are lower than that for the commercially available Nafion. The good stability and remarkable cell performance of the composite-blend membranes reported here make them definitely excellent candidates for the future generation of vanadium redox flow batteries.

5.
ACS Appl Mater Interfaces ; 12(2): 3171-3178, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31829551

RESUMO

Transition-metal catalysts immobilized on the surface of Metal-organic frameworks (MOFs) are being utilized for an ever-increasing number of reactions ranging from couplings to olefin oligomerization. While these reactions are usually performed in solution, unlike their homogeneous counterparts, the insolubility of the MOF systems makes it difficult to obtain detailed mechanistic information by in situ spectroscopic analysis in solution. In this report, we present a synthetic method to solubilize these systems by grafting oligomers on the surface of the MOF particles, making it possible to characterize these species by transmission infrared (IR) spectroscopy. The fundamental photochemistry of these catalysts was also studied and compared to that of their homogeneous counterparts. This work establishes a proof of principle for in-solution monitoring of heterogeneous catalysts.

6.
Dalton Trans ; 43(17): 6304-7, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24626600

RESUMO

A new organically-templated vanadium(III) fluoride, (NH4)2(C2H8N)[V3F12], has been prepared using an ionothermal approach. This compound has a unique layered structure featuring distorted S = 1 kagome planes separated by the cationic species. The compound exhibits magnetic frustration, with a canted antiferromagnetic ground state. On further cooling in the ground state a pronounced change in magnetisation kinetics is observed.

7.
Dalton Trans ; 43(2): 568-75, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24129339

RESUMO

There are only limited reports on vanadium(iv) oxyfluorides (VOFs) with extended crystal structures. Here we expand and enrich the list of existing VOFs with a series of 14 new materials "VOF-n (n = 1-14)" prepared using ionothermal and solvothermal synthesis methods. All of these materials arise from the condensation of a dimeric structural motif. These VOFs can be classified into three groups depending on their key structural features; layer structures: VOF-1"[HN2C7H6][V2O2F5]", VOF-2"[HN2C4H4][V2O2F5]", VOF-3"[HN2C3H4][V2O2F5]" and VOF-4"V2(N2C4H4)O2F4", ladder like structures: VOF-5"[NH4(HN2C3H4)][V2O2F6]", VOF-6"[K(HN2C3H4)][V2O2F6]", VOF-7"[HNH2CH2CH3][VOF3]", VOF-8"[HN2C7H6][VOF3]", VOF-9"[H2N2C4H6][V2O2F6]", VOF-10"ß-RbVOF3", VOF-11"α-KVOF3", VOF-12"ß-KVOF3", VOF-13"[H2(NH2)2(CH2)2][V2O2F6]", and a chain structure: VOF-14"[H2N2C6H12][V2O2F7]". The crystal structures of VOF-n are presented, and their synthetic and structural relationships are discussed.

8.
Nat Chem ; 3(10): 801-6, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21941253

RESUMO

Frustrated magnetic lattices offer the possibility of many exotic ground states that are of great fundamental importance. Of particular significance is the hunt for frustrated spin-1/2 networks as candidates for quantum spin liquids, which would have exciting and unusual magnetic properties at low temperatures. The few reported candidate materials have all been based on d(9) ions. Here, we report the ionothermal synthesis of [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)], an inorganic-organic hybrid solid that contains a S = 1/2 kagome network of d(1) V(4+) ions. The compound exhibits a high degree of magnetic frustration, with significant antiferromagnetic interactions but no long-range magnetic order or spin-freezing above 2 K, and appears to be an excellent candidate for realizing a quantum spin liquid ground state in a spin-1/2 kagome network.


Assuntos
Flúor/química , Óxidos/química , Quinuclidinas/química , Temperatura , Vanadatos/química , Vanádio/química , Cristalografia por Raios X , Magnetismo , Conformação Molecular , Teoria Quântica , Quinuclidinas/síntese química , Marcadores de Spin , Vanadatos/síntese química
9.
Dalton Trans ; 40(16): 4324-31, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21409203

RESUMO

An exploratory study of the synthesis of vanadium (oxy)fluorides (VOFs) using ionic liquids (ILs) and deep eutectic mixtures (DESs) as a solvent yielded 10 different materials. The previously reported chain type: (NH(4))(2)VF(5) (1), (NH(4))(2)VOF(4) (2), NH(4)VO(3) (3) and (H(2)NH(2)(CH(2))(2)NH(2))VF(5) (9) have been successfully produced for the first time using ILs as the reaction media. The monomeric (HNH(2)CH(3))(2)VOF(4)(H(2)O) (4), the dimer (HNH(2)CH(3))(4)V(2)O(2)F(8) (5) and the 1D chains (HNH(2)CH(3))(2)VF(5) (6), (H(2)O)(2)VF(3) (7), α-(H(2)NH(2)(CH(2))(2)NH(2))VOF(4) (8) and ß-(H(2)NH(2)(CH(2))(2)NH(2))VOF(4) (10) are novel materials. Template control has also been achieved by the selective choice of ILs or the appropriate deep eutectic mixture, where the expected template is delivered to the reaction by the partial breakdown of the urea derivative portion of the DES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA