Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(11): 6699-6715, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234757

RESUMO

In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including ß-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-ß-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.


Assuntos
Amiloide , Doenças Neurodegenerativas , Peptídeos Cíclicos , Amiloide/biossíntese , Amiloide/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Conformação Proteica em Folha beta
2.
J Med Chem ; 56(17): 6709-18, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23984871

RESUMO

Oxidative stress directly correlates with the early onset of vascular complications and the progression of peripheral insulin resistance in diabetes. Accordingly, exogenous antioxidants augment insulin sensitivity in type 2 diabetic patients and ameliorate its clinical signs. Herein, we explored the unique structural and functional properties of the abiotic cyclic D,L-α-peptide architecture as a new scaffold for developing multifunctional agents to catalytically decompose ROS and stimulate glucose uptake. We showed that His-rich cyclic D,L-α-peptide 1 is very stable under high H2O2 concentrations, effectively self-assembles to peptide nanotubes, and increases the uptake of glucose by increasing the translocation of GLUT1 and GLUT4. It also penetrates cells and protects them against oxidative stress induced under hyperglycemic conditions at a much lower concentration than α-lipoic acid (ALA). In vivo studies are now required to probe the mode of action and efficacy of these abiotic cyclic D,L-α-peptides as a novel class of antihyperglycemic compounds.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Animais , Linhagem Celular , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Peptídeos Cíclicos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA