Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35888988

RESUMO

In cystic fibrosis (CF), mutations in the CF transmembrane conductance regulator protein reduce ionic exchange in the lung, resulting in thicker mucus, which impairs mucociliary function, airway inflammation and infection. The mucosal and nutritional environment of the CF lung is inadequately mimicked by commercially available growth media, as it lacks key components involved in microbial pathogenesis. Defining the nutritional composition of CF sputum has been a long-term goal of in vitro research into CF infections to better elucidate bacterial growth and infection pathways. This narrative review highlights the development of artificial sputum medium, from a viable in vitro method for understanding bacterial mechanisms utilised in CF lung, to uses in the development of antimicrobial treatment regimens and examination of interactions at the epithelial cell surface and interior by the addition of host cell layers. The authors collated publications based on a PubMed search using the key words: "artificial sputum media" and "cystic fibrosis". The earliest iteration of artificial sputum media were developed in 1997. Formulations since then have been based either on published data or chemically derived from extracted sputum. Formulations contain combinations of mucin, extracellular DNA, iron, amino acids, and lipids. A valuable advantage of artificial sputum media is the ability to standardise media composition according to experimental requirements.

2.
Biomedicines ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36359406

RESUMO

Cystic fibrosis (CF) is a disorder causing dysfunctional ion transport resulting in the accumulation of viscous mucus. This environment fosters a chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans, a gram-negative aerobic bacillus, has been increasingly associated with antibiotic resistance and chronic colonisation in CF. In this study, we aimed to create a reproducible model of CF infection using an artificial sputum medium (ASMDM-1) with bronchial (BEAS-2B) and macrophage (THP-1) cells to test A. xylosoxidans infection and treatment toxicity. This study was conducted in three distinct stages. First, the tolerance of BEAS-2B cell lines and two A. xylosoxidans strains against ASMDM-1 was optimised. Secondly, the cytotoxicity of combined therapy (CT) comprising N-acetylcysteine (NAC) and the antibiotics colistin or ciprofloxacin was tested on cells alone in the sputum model in both BEAS-2B and THP-1 cells. Third, the efficacy of CT was assessed in the context of a bacterial infection within the live cell/sputum model. We found that a model using 20% ASMDM-1 in both cell populations tolerated a colistin-NAC-based CT and could significantly reduce bacterial loads in vitro (~2 log10 CFU/mL compared to untreated controls). This pilot study provides the foundation to study other bacterial opportunists that infect the CF lung to observe infection and CT kinetics. This model also acts as a springboard for more complex co-culture models.

3.
Int J Antimicrob Agents ; 58(2): 106372, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116184

RESUMO

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The resulting chloride and bicarbonate imbalance produces a thick, static lung mucus. This mucus is not easily expelled from the lung and can be colonised by bacteria, leading to biofilm formation. CF lung infection with Burkholderia cepacia complex (BCC), particularly the subspecies B. cenocepacia, results in higher morbidity and mortality. Patients infected with BCC can rapidly progress to "cepacia syndrome", a fatal necrotising pneumonia. The aim of this study was to identify whether a combination therapy (CT) of selected antioxidants and antibiotics significantly disrupts B. cenocepacia biofilms and to determine the optimum CT level for treatment. Using controlled in vitro spectrophotometry, colony-forming unit and microscopy assays, three antioxidants (N-acetylcysteine [NAC], glutathione and vitamin C) and three antibiotics (ciprofloxacin, ceftazidime and tobramycin) were screened and assessed for their ability to disrupt the early and mature biofilms of six B. cenocepacia CF isolates. A combination of NAC and ciprofloxacin produced a statistically significant biofilm disruption in all strains tested, with growth inhibition (>5-8 log10) observed when exposed to 4890 or 8150 µg/mL NAC in combination with 32 or 64 µg/mL ciprofloxacin. NAC-mediated biofilm disruption may be aided by the acidic pH of NAC at higher concentrations. This study showed that NAC is an effective disruptor that reduces the necessity for high concentrations of antibiotic. Further research will focus on the host toxicity and efficacy in ex vivo CF models.


Assuntos
Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Infecções por Burkholderia/tratamento farmacológico , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/microbiologia , Pulmão/microbiologia , Humanos
4.
Antibiotics (Basel) ; 10(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34680757

RESUMO

Cystic fibrosis (CF) is a genetic disorder causing dysfunctional ion transport resulting in accumulation of viscous mucus that fosters chronic bacterial biofilm-associated infection in the airways. Achromobacter xylosoxidans and Stenotrophomonas maltophilia are increasingly prevalent CF pathogens and while Burkholderia cencocepacia is slowly decreasing; all are complicated by multidrug resistance that is enhanced by biofilm formation. This study investigates potential synergy between the antibiotics ciprofloxacin (0.5-128 µg/mL), colistin (0.5-128 µg/mL) and tobramycin (0.5-128 µg/mL) when combined with the neutral pH form of N-Acetylcysteine (NACneutral) (0.5-16.3 mg/mL) against 11 cystic fibrosis strains of Burkholderia, Stenotrophomonas and Achromobacter sp. in planktonic and biofilm cultures. We screened for potential synergism using checkerboard assays from which fraction inhibitory concentration indices (FICI) were calculated. Synergistic (FICI ≤ 0.5) and additive (0.5 > FICI ≥ 1) combinations were tested on irreversibly attached bacteria and 48 h mature biofilms via time-course and colony forming units (CFU/mL) assays. This study suggests that planktonic FICI analysis does not necessarily translate to reduction in bacterial loads in a biofilm model. Future directions include refining synergy testing and determining further mechanisms of action of NAC to understand how it may interact with antibiotics to better predict synergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA