Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541450

RESUMO

The low-temperature plasma nitriding was utilized to describe the microscopic solid-phase separation in the austenitic stainless-steel type AISI316, induced by the nitrogen supersaturation. This nitrogen supersaturated layer with the thickness of 60 µm had a two-phase nanostructure where the nitrogen-poor and nitrogen-rich clusters separated from each other. Due to this microscopic solid-phase separation, iron and nickel atoms decomposed themselves from chromium atoms and nitrogen solutes in this nitrogen supersaturated AISI316 layer. These microscopic cluster separation and chemical decomposition among the constituent elements in AISI316 were induced in the multi-dimensional scale by the plastic straining along the slip lines in the (111)-orientation from the surface to the depth of matrix. The nitrogen solute diffused through the cluster boundaries into the depth. With the aid of masking technique, this nitrogen supersaturation and nanostructuring was controlled to take place only in the unmasked AISI316 matrix. The nanostructures with two separated clusters were mesoscopically embedded into AISI316 matrix after the masking micro-textures. This microscopic and mesoscopic structure control was available in surface treatment of multi-host metals such as superalloys and high entropy alloys.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392736

RESUMO

A new solid lubrication method was proposed for dry forging of pure titanium with high reduction in thickness. A free-carbon tribofilm was formed in situ at the hot spots on the contact interface to protect the die surfaces from severe adhesion of work materials. This film consisted of the free carbon, which isolated from the carbon supersaturated die substrate materials, diffused to the contact interface and agglomerated to a thin film. Two different routes of carbon supersaturation process were developed to prepare carbon supersaturated ceramic and metal dies for the dry forging of pure titanium wires. A pure titanium bar was utilized as an easy-to-adherent work material for upsetting in dry and cold. The round bar was upset up to 70% in reduction in thickness with a low friction coefficient from 0.05 to 0.1 in a single stroke. Work hardening was suppressed by this low friction. SEM-EDX, EBSD and Raman spectroscopy were utilized to analyze the contact interface and to understand the role of in situ formed free-carbon films on the low friction and low work hardening during forging. Precise nanostructure analyses were utilized to describe low friction forging behavior commonly observed in these two processes. The in situ solid lubrication mechanism is discussed based on the equivalence between the nitrogen and carbon supersaturation processes.

3.
Micromachines (Basel) ; 14(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984914

RESUMO

An acicular microtextured sheet was developed as a heat radiation device from the high-temperature source to the cooling medium in the infrared (IR) spectrum. The copper surface was modified by acicular micro-texturing to place a semi-regular micro-/nano-cone structure onto it. FT-IR (Fourier transformation IR) spectroscopy was utilized to measure the transmittance diagram in near-IR to far-IR wavelengths. The wavelength (λ) of 6.7 µm, where the highest absorbance valley was detected in the diagram, was equivalent to the doubled size of the micro-cone average height, with Have = 3.3 µm; λ ~ 2 × Have. The electromagnetic waves in the far-IR wavelength were emitted by acicular micro-textured metallic sheets. The heat radiation transfer experiment was performed to describe this low-temperature heat radiation behavior. No temperature rise was detected on the black-colored polycarbonate (BC-PC) plate away from the bare copper sheet without textures, located on the high-temperature source. The temperature increased by 4 K on the BC-PC plate using the acicular textured copper sheet device. The emitter temperature also decreased significantly by 50 K or 50% of the heat source temperature.

4.
Micromachines (Basel) ; 13(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35208389

RESUMO

A new data transformation method for micro-manufacturing using a topological model for a micro-/nano-texture was proposed for a surface-decorated product. Femtosecond laser printing was utilized to form the micro-/nano-textures into the hardened thick layer of dies by plasma nitriding. At first, the plasma-nitrided AISI316L flat substrate was laser-printed as a punch to imprint the tailored nano-textures onto the AA1060 aluminum plate for its surface decoration with topological emblems. Second, the plasma-nitrided SKD11 cylindrical punch was laser-trimmed to form the nanostructures on its side surface. This nano-texture was imprinted onto the hole surface concurrently with piercing a circular hole into electrical steel sheet. The fully burnished surface had a shiny, metallic quality due to the nano-texturing. The plasma nitriding, the laser printing and the CNC (computer numerical control) imprinting provided a way of transforming the tailored textures on the metallic product.

5.
Micromachines (Basel) ; 13(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35457867

RESUMO

An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to search for the way to minimize the affected zone widths. A coarse-grained electrical steel sheet was employed as a work material for a fine piercing experiment under the narrowed clearance between the plasma-nitrided SKD11 punch and core-die. The shearing behavior by the applied loading for piercing was described by in situ measurement of the load-stroke relationship. The plastic straining in the single-crystal electrical steel sheet was characterized by SEM (scanning electron microscopy) and EBSD (electron back-scattering diffraction) to define the affected zone size and to analyze the rotation of crystallographic orientations by the induced plastic distortion during piercing. Integral and differentiation of spin rotation measured the affected zones. The effect of punch edge sharpness on these spin-rotation measures was also discussed using the nitrided and ion-milled SKD11 punch and core-die.

6.
Materials (Basel) ; 15(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268912

RESUMO

The periodic nanotexture was superposed to the micro-textured grooves on the side surface of the punch. These grooves with nanotextures were shaped to have parallel and vertical orientations to the punch stroke direction, respectively. A stack of five amorphous electrical steel sheets was punched out with these micro-/nano-textured punches. The process affected zone at the vicinity of the punched hole was analyzed by SEM (Scanning Electron Microscopy) and a three-dimensional profilometer. The punch surfaces were also observed by SEM to describe the debris particle adhesion on them. The dimensional change in each layer of the stack before and after perforation was measured to describe the punching behavior with the comparison to the punch diameter.

7.
Materials (Basel) ; 14(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068328

RESUMO

A tool steel type SKD11 punch was plasma carburized at 673 K for 14.4 ks at 70 Pa to make carbon supersaturation. This carburized SKD11 punch was employed for upsetting the pure titanium wire with the diameter of 1.00 mm up to the reduction of thickness by 70% in a single shot. Its contact interface to titanium work was analyzed to describe the anti-galling behavior in this forging. Little trace of titanium proved that the galling process was suppressed by the in situ solid lubrication. The isolated free carbon agglomerates are wrought as a solid lubricant to sustain the galling-free forging process. This anti-galling upsetting reduced the residual strains in the forged wires. A long titanium wire with a length of 45 mm was incrementally upset to yield the titanium ribbon with a thickness of 0.3 mm, the width of 2.3 mm, and the length of 50 mm. The grain size of original pure titanium was much reduced to 2 µm on average. A micro-pillared microtexture was imprinted onto this forged titanium ribbon.

8.
Micromachines (Basel) ; 12(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067805

RESUMO

A CVD (Chemical Vapor Deposition) diamond coated tungsten carbide (WC) and cobalt (Co) sintered alloy punch was trimmed by the femtosecond laser machining to sharpen its edge with about 2 µm and to simultaneously make nanostructuring to its side surface. In addition to the sharpened edge, its edge profile was formed to be homogeneous enough to reduce the damage layer width by piercing the electrical amorphous steel sheet stack. Each brittle sheet in the stacked work was damaged to have three kinds of defects by piercing; e.g., the droop-like cracking in the thickness and at the vicinity of hole, the wrinkling in peak-to-valley with partial cracking on the peaks, and the circumferential cracking. When using the WC (Co) punch with the inhomogeneous edge profile in the sharpened edge width, these three damages were induced into each sheet and the maximum damage width exceeded 80 µm. When using the punch with the sharpened edge and homogeneous edge profile, the wrinkling mode was saved and the total affected layer width was significantly reduced to less than 20 µm. Through the precise embossing experiments, this effect of punch edge profile condition to the induced damages was discussed with a statement on the nanostructuring effect on the reduction of damaged width in electrical amorphous steel sheets. The developed tool with the sharpened edge and homogenous edge condition contributes to the realization of a low iron loss motor with a reduced affected layer width.

9.
Materials (Basel) ; 13(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867120

RESUMO

Dense ß-SiC coating with 3C-structure was utilized as a dry cold forging punch and core-die. Pure titanium T328H wires of industrial grade II were employed as a work material. No adhesion or galling of metallic titanium was detected on the contact interface between this ß-SiC die and titanium work, even after this continuous forging process, up to a reduction in thickness by 70%. SEM (Scanning Electron Microscopy) and EDX (Electron Dispersive X-ray spectroscopy) were utilized to analyze this contact interface. A very thin titanium oxide layer was in situ formed in the radial direction from the center of the contact interface. Isolated carbon from ß-SiC agglomerated and distributed in dots at the center of the initial contact interface. Raman spectroscopy was utilized, yielding the discovery that this carbon is unbound as a free carbon or not bound in SiC or TiC and that intermediate titanium oxides are formed with TiO2 as a tribofilm.

10.
Micromachines (Basel) ; 10(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370280

RESUMO

Surface geometry has had an influence on the surface property, in addition to the intrinsic surface energy, of materials. Many physical surface modification methods had been proposed to control the solid surface geometry for modification of surface properties. Recently, short-pulse lasers were utilized to perform nano-texturing onto metallic and polymer substrates for the improvement of surface properties. Most of the papers reported that the hydrophilic metallic surface was modified to have a higher contact angle than 120-150°. Little studies explained the relationship between surface geometry and surface properties. In the present study, the laser micro-/nano-texturing was developed to describe this surface-geometric effect on the static contact angles for pure water. Micropatterns with multi spatial frequencies are designed and synthesized into a microtexture. This tailored microtexture was utilized to prepare for computer aided machining (CAM) data to control the femtosecond laser beams. The nano-length ripples by laser induced periodic surface structuring (LIPSS) supposed onto this microtexture to form the micro-/nano-texture on the AISI304 substrate surface. Computational geometry was employed to describe this geometric profile. The fractal dimension became nearly constant by 2.26 and insensitive to increase of static contact angle (θ) for θ > 150°. Under this defined self-similarity, the micro-/nano-textured surface state was controlled to be super-hydrophobic by increasing the ratio of the highest spatial frequency in microtextures to the lowest one. This controllability of surface property on the stainless steels was supported by tailoring the wavelength and pitch of microtextures. Exposure testing was also used to evaluate the engineering durability of this micro-/nano-textured surface. Little change of the measured fractal dimension during the testing proved that this physically modified AISI304 surface had sufficient stability for its long-term usage in air.

11.
Materials (Basel) ; 12(16)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31430966

RESUMO

Copper substrates were wrought to have micro-grooves for packaging by micro-stamping with use of a AISI316 stainless steel micro-punch array. The micro-texture of this arrayed punch was first tailored and compiled into CAD data. A screen film was prepared to have the tailored micro-pattern in correspondence to the CAD data. A negative pattern to this screen was printed directly onto the AISI316 die substrate. This substrate was plasma nitrided at 673 K for 14.4 ks. The unprinted die surfaces were selectively nitrogen super-saturated to have sufficiently high corrosion toughness and hardness; other surfaces were masked by the prints. The two-dimensional micro-pattern on the screen was transformed into a three-dimensional nitrogen supersaturated micro-texture embedded in the AISI316 die. The printed surfaces were selectively sand-blasted to fabricate the micro-textured punch array for micro-embossing. A uniaxial compression testing machine was utilized to describe the micro-embossing behavior in copper substrates and to investigate how the micro-texture on the die was transcribed to the copper. The micro-punch array in this study consisted of three closed loop heads with a width of 75 µm and a height of 120 µm after plasma nitriding and sand-blasting. Since the nitrogen supersaturated heads had sufficient hardness against the blasting media, the printed parts of AISI316 die were removed. The micro-embossing process was described by comparison of the geometric configurations between the multi-punch array and the embossed copper plate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA