Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Manuf Syst ; 48 Pt C2018.
Artigo em Inglês | MEDLINE | ID: mdl-31092965

RESUMO

Machine learning (ML) (a subset of artificial intelligence that focuses on autonomous computer knowledge gain) is actively being used across many domains, such as entertainment, commerce, and increasingly in industrial settings. The wide applicability and low barriers for development of these algorithms are allowing for innovations, once thought unattainable, to be realized in an ever more digital world. As these innovations continue across industries, the manufacturing industry has also begun to gain benefits. With the current push for Smart Manufacturing and Industrie 4.0, ML for manufacturing is experiencing unprecedented levels of interest; but how much is industry actually using these highly-publicized techniques? This paper sorts through a decade of manufacturing publications to quantify the amount of effort being put towards advancing ML in manufacturing. This work identifies both prominent areas of ML use, and popular algorithms. This also allows us to highlight any gaps, or areas where ML could play a vital role. To maximize the search space utilization of this investigation, ML based Natural Language Processing (NLP) techniques were employed to rapidly sort through a vast corpus of engineering documents to identify key areas of research and application, as well as uncover documents most pertinent to this survey. The salient outcome of this research is the presentation of current focus areas and gaps in ML applications to the manufacturing industry, with particular emphasis on cross domain knowledge utilization. A full detailing of methods and findings is presented.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31276104

RESUMO

Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This paper presents an extension to the Predictive Model Markup Language (PMML) standard, for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on Extensible Markup Language (XML) and used for the representation of analytical models. The BN PMML representation is available in PMML v4.3 released by the Data Mining Group. We demonstrate the conversion of analytical models into the BN PMML representation, and the PMML representation of such models into analytical models, through a Python parser. The BNs obtained after parsing PMML representation can then be used to perform Bayesian inference. Finally, we illustrate the developed BN PMML schema for a welding process.

3.
IEEE Trans Neural Netw Learn Syst ; 27(8): 1734-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-25910257

RESUMO

The increasing liberalization of European electricity markets, the growing proportion of intermittent renewable energy being fed into the energy grids, and also new challenges in the patterns of energy consumption (such as electric mobility) require flexible and intelligent power grids capable of providing efficient, reliable, economical, and sustainable energy production and distribution. From the supplier side, particularly, the integration of renewable energy sources (e.g., wind and solar) into the grid imposes an engineering and economic challenge because of the limited ability to control and dispatch these energy sources due to their intermittent characteristics. Time-series prediction of wind speed for wind power production is a particularly important and challenging task, wherein prediction intervals (PIs) are preferable results of the prediction, rather than point estimates, because they provide information on the confidence in the prediction. In this paper, two different machine learning approaches to assess PIs of time-series predictions are considered and compared: 1) multilayer perceptron neural networks trained with a multiobjective genetic algorithm and 2) extreme learning machines combined with the nearest neighbors approach. The proposed approaches are applied for short-term wind speed prediction from a real data set of hourly wind speed measurements for the region of Regina in Saskatchewan, Canada. Both approaches demonstrate good prediction precision and provide complementary advantages with respect to different evaluation criteria.

4.
IEEE Trans Neural Netw Learn Syst ; 26(11): 2787-800, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25730829

RESUMO

We consider the task of performing prediction with neural networks (NNs) on the basis of uncertain input data expressed in the form of intervals. We aim at quantifying the uncertainty in the prediction arising from both the input data and the prediction model. A multilayer perceptron NN is trained to map interval-valued input data onto interval outputs, representing the prediction intervals (PIs) of the real target values. The NN training is performed by nondominated sorting genetic algorithm-II, so that the PIs are optimized both in terms of accuracy (coverage probability) and dimension (width). Demonstration of the proposed method is given in two case studies: 1) a synthetic case study, in which the data have been generated with a 5-min time frequency from an autoregressive moving average model with either Gaussian or Chi-squared innovation distribution and 2) a real case study, in which experimental data consist of wind speed measurements with a time step of 1 h. Comparisons are given with a crisp (single-valued) approach. The results show that the crisp approach is less reliable than the interval-valued input approach in terms of capturing the variability in input.


Assuntos
Algoritmos , Movimento (Física) , Redes Neurais de Computação , Incerteza , Vento , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA