Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38460440

RESUMO

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Assuntos
Infarto do Miocárdio , Estilbenos , Ratos , Animais , NF-kappa B/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Resveratrol/farmacologia , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Lipopolissacarídeos/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Ratos Wistar , Infarto do Miocárdio/tratamento farmacológico , Dieta
2.
Eur J Pharmacol ; 971: 176540, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552938

RESUMO

Identification of concomitant miRNAs and transcription factors (TFs) with differential expression (DEGs) in MI is crucial for understanding holistic gene regulation, identifying key regulators, and precision in biomarker and therapeutic target discovery. We performed a comprehensive analysis using Affymetrix microarray data, advanced bioinformatic tools, and experimental validation to explore potential biomarkers associated with human pathology. The search strategy includes the identification of the GSE83500 dataset, comprising gene expression profiles from aortic wall punch biopsies of MI and non-MI patients, which were used in the present study. The analysis identified nine distinct genes exhibiting DEGs within the realm of MI. miRNA-gene/TF and TF-gene/miRNA regulatory relations were mapped to retrieve interacting hub genes to acquire an MI miRNA-TF co-regulatory network. Furthermore, an animal model of I/R-induced MI confirmed the involved gene based on quantitative RT-PCR and Western blot analysis. The consequences of the bioinformatic tool substantiate the inference regarding the presence of three key hub genes (UBE2N, TMEM106B, and CXADR), a central miRNA (hsa-miR-124-3p), and sixteen TFs. Animal studies support the involvement of predicted genes in the I/R-induced myocardial infarction assessed by RT-PCR and Western blotting. Thus, the final consequences suggest the involvement of promising molecular pathways regulated by TF (p53/NF-κB1), miRNA (hsa-miR-124-3p), and hub gene (UBE2N), which may play a key role in the pathogenesis of MI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
3.
Eur J Pharmacol ; 978: 176795, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38950836

RESUMO

With a global towering prevalence of index acute myocardial infarction (nonrecurrent MI, NR-MI), a high incidence of recurrent MI (R-MI) has emerged in recent decades. Despite the extensive occurrence, the promising predictors of R-MI have been elusive within the cohort of survivors. This study investigates and validates the involvement of distinct gene expressions in R-MI and NR-MI. Bioinformatics tools were used to identify DEGs from the GEO dataset, functional annotation, pathway enrichment analysis, and the PPI network analysis to find hub genes. The validation of proposed genes was conceded by qRT-PCR and Western Blot analysis in experimentally induced NR-MI and R-MI models on a temporal basis. The temporal findings based on RT-PCR consequences reveal a significant and constant upregulation of the UBE2N in the NR-MI model out of the proposed three DEGs (UBE2N, UBB, and TMEM189), while no expression was reported in the R-MI model. Additionally, the proteomics study proposed five DEGs (IL2RB, NKG7, GZMH, CXCR6, and GZMK) for the R-MI model since IL2RB was spotted for significant and persistent downregulation with different time points. Further, Western Blot analysis validated these target genes' expressions temporally. I/R-induced NR-MI and R-MI models were confirmed by the biochemical parameters (CKMB, LDH, cTnI, serum nitrite/nitrate concentration, and inflammatory cytokines) and histological assessments of myocardial tissue. These results underscore the importance of understanding genetic mechanisms underlying MI and highlight the potential of UBE2N and IL2RB as biomarkers for non-recurrent and recurrent MI, respectively.


Assuntos
Biologia Computacional , Modelos Animais de Doenças , Infarto do Miocárdio , Recidiva , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Animais , Marcadores Genéticos , Masculino , Mapas de Interação de Proteínas/genética , Fatores de Tempo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
4.
ACS Omega ; 9(7): 8139-8150, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405505

RESUMO

Tenofovir (TNF) is a common component of many antiretroviral therapy regimens, but it is associated with poor membrane permeability and low oral bioavailability. To improve its oral bioavailability and membrane permeability, a self-emulsifying drug delivery system (SEDDS) was developed and characterized, and its relative bioavailability was compared to the marketed tablets (Tenof). Based on solubility and ternary phase diagram analysis, eucalyptus oil was selected as an oil phase, Kolliphor EL, and Kollisolv MCT 70 were chosen as surfactant and cosurfactant, respectively, while glycerol was used as cosolvent in surfactant mixture. Optimized SEDDS formulation F6 showed an oil droplet size of 98.82 nm and zeta potential of -13.03 mV, indicating the high stability of oil droplets. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy characterization studies were also carried out to assess the amorphous and morphological states of the drug in the prepared SEDDS formulation. The in vitro dissolution profile of SEDDS shows the rapid release of the drug. SEDDS F6 demonstrates a higher drug permeability than the plain TNF and TNF-marketed tablets (Tenof). A pharmacokinetic study in rats revealed that SEDDS F6 showed significantly higher Cmax and AUC0-t than the marketed tablets and pure drug suspension. In addition, the relative bioavailability of SEDDS formulation dramatically improved by 21.53-fold compared to marketed tablets and 66.27-fold compared to pure drugs. These findings show that SEDDS composed of eucalyptus oil, glycerol, Kolliphor EL, and Kollisolv MCT 70 could be a useful tool for enhancing physiochemical properties and oral TNF absorption. Therefore, SEDDS has shown promise in improving the oral bioavailability of poorly water-soluble drugs.

5.
Heliyon ; 10(3): e25607, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356540

RESUMO

Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA