Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Environ Res ; 219: 114954, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529322

RESUMO

This study was carried out to evaluate the forage quantity and quality of several halophyte species grown in arid-saline environments. After identifying 44 halophytic species in the region and considering the potential of quantitative and qualitative forage production, 13 species from four families, i.e. Amaranthaceae, Asteraceae, Leguminosae and Convolvulaceae, and eight genera were selected for further evaluation. These species differed significantly in terms of both forage quantity, measured in terms of fresh (FW) and dry weight (DW), and forage quality assessed in terms of tissue water content (TWC), ash, nitrogen content (N), crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), dry matter digestibility and metabolizable energy (ME). The highest fresh and dry weights were obtained from Suaeda ferticosa (1006.3 g and 306.3 g, respectively) and Noaea mucronata (909.3 g and 309 g, respectively). However, based on forage quality characteristics, Alhagi maurorum, Bassia scoparia, Noaea mucronata, Halostachys belangriana and Cressa cretica showed the best forage potential. Values of ash, CP, ADF, NDF and ME measured in the halophytes species ranged between 7.9% and 33.2%, 6.2% and 15.8%, 30.0% and 50.3%, 33.2% and 56.4%, 5.6 and 8.7 MJ kg-1, respectively. The forage quality of the evaluated halophytic plants was influenced by unfavorable environmental conditions such as high soil salinity and low rainfall, however, these species can be considered as new sources of forage. Nevertheless, further studies are needed to improve the quality of such halophytic species by reducing the ash content and increasing the ME.


Assuntos
Fibras na Dieta , Plantas Tolerantes a Sal , Humanos , Plantas Tolerantes a Sal/metabolismo , Fibras na Dieta/metabolismo , Ração Animal/análise , Digestão , Detergentes
2.
Physiol Plant ; 172(2): 1399-1411, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32949410

RESUMO

Thiamin, an important member of the vitamin B family, is believed to play a significant role in mitigating environmental stresses including drought stress. In turnip, drought stress causes a reduced growth, biomass yield, pigment content, total phenolics and ascorbic acid (AsA), particularly at 50% field capacity (F.C.) in the two cultivars (cv) studied. However, a significant enhancement was observed in the contents of leaf proline, glycinebetaine (GB), malondialdehyde (MDA), hydrogen peroxide (H2 O2 ) and the activities of catalase (CAT) and superoxide dismutase (SOD) as well as root proline, GB, total phenolics, AsA, H2 O2 , MDA and the activities of peroxidase (POD) and SOD. However, foliar-applied thiamin significantly improved (particularly 100 mM) all the growth attributes, photosynthetic pigments, leaf and root osmoprotectants (GB and proline), AsA, total phenolics and the activities of enzymatic antioxidants such as SOD and POD as well as root CAT in both turnip cultivars under drought stress conditions. Foliar application of thiamin was effective in decreasing the leaf and root H2 O2 and MDA content in both cultivars particularly at 50% F.C. Thiamin-induced growth of both turnip cultivars, particularly of cv. Purple Top, was found to be associated with increased photosynthetic pigments, proline and GB contents and antioxidant capacity, but reduced levels of reactive oxygen species (ROS) under water deficit conditions. So, it is suggested that exogenous application of thiamin can be effective in improving drought tolerance of plants.


Assuntos
Brassica napus , Brassica rapa , Antioxidantes , Secas , Folhas de Planta , Tiamina
3.
Physiol Plant ; 172(2): 317-333, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32562257

RESUMO

This study was carried out to assess the influence of trehalose, a non-reducing disaccharide involved in improving plant stress tolerance, on two cultivars (Hysun 33 and FH 598) of sunflower (Helianthus annuus L.) grown under control and drought stress conditions. At pre-flowering stage, varying concentrations (10, 20 and 30 mM) of trehalose were applied to the foliage. Drought stress significantly suppressed the plant growth, total soluble proteins, chlorophyll, achene yield per plant, oil percentage, organic contents, as well as oil palmitic and linoleic acids in both sunflower cultivars. External application of trehalose significantly reduced RMP (relative membrane permeability), and the accumulation of H2 O2 (hydrogen peroxide), while a considerable improvement was recorded in shoot fresh and shoot and root dry weights, total soluble proteins, glycinebetaine, AsA (ascorbic acid), total phenolics, achene yield per plant, oil contents, inorganic and organic contents, and the activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) enzymes under water-limited regimes. The cultivar Hysun 33 was superior to the other cultivar in plant growth, RMP, glycinebetaine, proline, achene yield per plant, oil contents, and palmitic and linoleic acids. Overall, foliar-applied trehalose improved plant growth, oxidative defense system, yield and oil composition of sunflower under drought stress conditions.


Assuntos
Helianthus , Antioxidantes , Catalase , Secas , Folhas de Planta , Trealose
4.
Planta ; 251(1): 3, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776765

RESUMO

MAIN CONCLUSION: Plant osmoprotectants protect against abiotic stresses. Introgression of osmoprotectant genes into crop plants via genetic engineering is an important strategy in developing more productive plants. Plants employ adaptive mechanisms to survive various abiotic stresses. One mechanism, the osmoprotection system, utilizes various groups of low molecular weight compounds, collectively known as osmoprotectants, to mitigate the negative effect of abiotic stresses. Osmoprotectants may include amino acids, polyamines, quaternary ammonium compounds and sugars. These nontoxic compounds stabilize cellular structures and enzymes, act as metabolic signals, and scavenge reactive oxygen species produced under stressful conditions. The advent of recent drastic fluctuations in the global climate necessitates the development of plants better adapted to abiotic stresses. The introgression of genes related to osmoprotectant biosynthesis from one plant to another by genetic engineering is a unique strategy bypassing laborious conventional and classical breeding programs. Herein, we review recent literature related to osmoprotectants and transgenic plants engineered with specific osmoprotectant properties.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Betaína/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
5.
Planta ; 250(2): 629-642, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31139926

RESUMO

MAIN CONCLUSION: Primitive wheat follows an opposite metabolic law from modern wheat with regard to leaf biomass/reproductive growth vs above-ground biomass that is under the regulation of non-hydraulic root signals and that influences resource acquisition and utilization. Non-hydraulic root signals (nHRS) are so far affirmed as a unique positive response to drying soil in wheat, and may imply huge differences in energy metabolism and source-sink relationships between primitive and modern wheat species. Using a pot-culture split-root technique to induce nHRS, four primitive wheat genotypes (two diploids and two tetraploids) and four modern wheat ones (released from different breeding decades) were compared to address the above issue. The nHRS was continuously induced in drying soil, ensuring the operation of energy metabolism under the influence of nHRS. We found that primitive wheat followed an opposite size-dependent allometric pattern (logy = αlogx + logß) in comparison with modern wheat. The relationships between ear biomass (y-axis) vs above-ground biomass (x-axis), and between reproductive biomass (y-axis) and vegetative (x-axis) biomass fell into a typical allometric pattern in primitive wheat (α > 1), and the nHRS significantly increased α (P < 0.01). However, in modern wheat, they turned to be in an isometric pattern (α ≈ 1). Regardless of nHRS, either leaf (i.e., metabolic rate) or stem biomass generally exhibited an isometric relationship with above-ground biomass in primitive wheat (α ≈ 1), while in modern wheat they fell into an allometric pattern (α > 1). Allometric scaling of specific leaf area (SLA) or biomass density showed superior capabilities of resource acquisition and utilization in modern wheat over primitive ones. We therefore proposed a generalized model to reveal how modern wheat possesses the pronounced population yield advantage over primitive wheat, and its implications on wheat domestication.


Assuntos
Transdução de Sinais , Triticum/fisiologia , Biomassa , Diploide , Domesticação , Secas , Genótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Reprodução , Solo/química , Triticum/genética , Triticum/crescimento & desenvolvimento
6.
Physiol Mol Biol Plants ; 25(5): 1121-1135, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31564776

RESUMO

Oat (Avena sativa) plants grown under 60% field capacity (water-deficit stress) were subjected to proline (40 mM) applied as a foliage spray. Water-deficit conditions suppressed plant growth, chlorophyll contents, leaf vascular bundle area, leaf phloem area and leaf midrib thickness, root diameter, root cortex thickness, stem diameter, stem vascular bundle area and stem phloem area. In contrast, water stress caused an increase in leaf proline, hydrogen peroxide, activities of peroxidase and superoxide dismutase enzymes, leaf bulliform cell area, leaf adaxial epidermis thickness, leaf sclerenchyma thickness, root metaxylem area, root epidermis and endodermis area, root stelar diameter, stem sclerenchyma thickness and stem epidermis thickness. However, exogenous application of proline significantly improved the plant growth, leaf proline contents, metaxylem area, mesophyll thickness, root diameter, root cortex thickness, root epidermis, endodermis thickness, stelar diameter, metaxylem area, stem diameter, stem vascular bundle area, stem epidermis area, stem phloem area and stem sclerenchyma thickness. Overall, foliar spray of proline was effective in improving drought stress tolerance which can be attributed to proline-induced significant modulations in physio-biochemical and anatomical features of oat plants.

7.
Compr Rev Food Sci Food Saf ; 17(5): 1325-1338, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33350163

RESUMO

Peanut is a multipurpose oil-seed legume, which offer benefits in many ways. Apart from the peanut plant's beneficial effects on soil quality, peanut seeds are nutritious and medicinally and economically important. In this review, insights into peanut origin and its domestication are provided. Peanut is rich in bioactive components, including phenolics, flavonoids, polyphenols, and resveratrol. In addition, the involvement of peanut in biological nitrogen fixation is highly significant. Recent reports regarding peanut responses and N2 fixation ability in response to abiotic stresses, including drought, salinity, heat stress, and iron deficiency on calcareous soils, have been incorporated. As a biotechnological note, recent advances in the development of transgenic peanut plants are also highlighted. In this context, regulation of transcriptional factors and gene transfer for the development of stress-tolerant peanut genotypes are of prime importance. Above all, this review signifies the importance of peanut cultivation and human consumption in view of the scenario of changing world climate in order to maintain food security.

8.
J Plant Res ; 130(3): 599-609, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28324190

RESUMO

Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H2O2), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.


Assuntos
Secas , Estresse Fisiológico , Ureia/metabolismo , Urease/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/fisiologia , Antioxidantes/metabolismo , Ativação Enzimática , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Compostos Organofosforados/antagonistas & inibidores , Osmorregulação/fisiologia , Peroxidases/metabolismo , Fotossíntese , Pigmentos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Água/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
9.
Trop Anim Health Prod ; 47(3): 563-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25616982

RESUMO

The current research on the manganese (Mn) transfer from soil to plant as well as to grazing Kajli rams in the form of sampling periods was carried out under semi-arid environmental conditions. Forage, soil and blood plasma samples were collected during 4 months of the year after a 1-month interval, and Mn concentrations were assessed after wet digestion using an atomic absorption spectrophotometer. Results showed that Mn concentration in soil ranged from 48.28 to 59.44 mg/kg, with incoherent augment and decline across sampling periods, and effect of sampling period on soil Mn was also found to be significant (P < 0.05). The mean levels of Mn in soil appeared higher than the critical value and sufficient for forage crop requirement. The Mn concentration in forage ranged between 24.8 and 37.2 mg/kg, resulting deficient based on the requirement allowance of Mn for livestock grazing animals, therein with almost unchanged forage Mn concentration. The Mn values in blood plasma of rams varied from 0.066 to 0.089 mg/l, with a consistent increase based on sampling period, and the effect of sampling periods on plasma Mn was found to be highly significant (P < 0.05). The Mn levels in ram blood plasma were lesser than the normal level suggesting reasonable need for supplementation. Our study revealed the role of Mn availability in soil and plant species amassing capability on the transport of Mn in the soil-plant-animal system. Results indicated a much higher accumulation rate at the sampling characterized by vegetation dominated by legumes in comparison to grasses, crop residues and mixed pasture and a pronounced seasonal supply of Mn at the four sampling period of grazing land of diverse botanical composition.


Assuntos
Criação de Animais Domésticos , Manganês/metabolismo , Poaceae/metabolismo , Ovinos/sangue , Solo/química , Animais , Gado , Masculino , Manganês/sangue , Manganês/química
10.
Rev Environ Contam Toxicol ; 229: 51-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24515810

RESUMO

Cadmium (Cd) is a water soluble metal pollutant that is not essential to plant growth.It has attracted attention from soil scientists and plant nutritionists in recent years because of its toxicity and mobility in the soil-plant continuum. Even low levels of Cd (0.1-1 J.!M) cause adverse effects on plant growth and metabolism. Cadmium is known to trigger the synthesis of reactive oxygen species, hinder utilization, uptake and transport of essential nutrients and water, and modify photosynthetic machinery,thereby resulting in plant tissue death. Although the effects of Cd are dose- as well as plant species-dependent, some plants show Cd tolerance through a wide range of cellular responses. Such tolerance results from synthesis of osmolytes,generation of enzymatic and non-enzymatic antioxidants and metal-detoxifying peptides, changes in gene expression, and metal ion homeostasis and compartmentalization of ligand-metal complexes. Cd toxicity in plants produces effects on chlorophyllbio synthesis, reduces photosynthesis, and upsets plant water relations and hormonal and/or nutritional balances. All of these effects on plants and on plant metabolism ultimately reduce growth and productivity.In this review, we describe the extent to which Cd affects underlying metabolic processes in plants and how such altered processes affect plant growth. We review the sources of Cd contamination, its uptake, transportation and bioavailability and accumulation in plants, and its antagonistic and synergistic effects with other metals and compounds. We further address the effects of Cd on plant genetics and metabolism,and how plants respond to mitigate the adverse effects of Cd exposure, as well as strategies(e.g., plant breeding) that can reduce the impact of Cd contamination on plants.


Assuntos
Cádmio/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/efeitos dos fármacos , Cádmio/farmacocinética , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Poluentes do Solo/toxicidade
11.
Plants (Basel) ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987105

RESUMO

The application of carbon-based nanomaterials (CBNMs) in plant science and agriculture is a very recent development. Many studies have been conducted to understand the interactions between CBNMs and plant responses, but how fullerol regulates wheat subjected to drought stress is still unclear. In this study, seeds of two wheat cultivars (CW131 and BM1) were pre-treated with different concentrations of fullerol to investigate seed germination and drought tolerance. Our results indicate that the application of fullerol at certain concentrations (25-200 mg L-1) significantly promoted seed germination in two wheat cultivars under drought stress; the most significant effective concentration was 50 mg L-1, which increased the final germination percentage by 13.7% and 9.7% compared to drought stress alone, respectively. Wheat plants exposed to drought stress induced a significant decrease in plant height and root growth, while reactive oxygen species (ROS) and malondialdehyde (MDA) contents increased significantly. Interestingly, wheat seedlings of both cultivars grown from 50 and 100 mg L-1 fullerol-treated seeds were promoted in seedling growth under water stress, which was associated with lower ROS and MDA contents, as well as higher antioxidant enzyme activities. In addition, modern cultivars (CW131) had better drought adaptation than old cultivars (BM1) did, while the effect of fullerol on wheat had no significant difference between the two cultivars. The study demonstrated the possibility of improving seed germination, seedling growth and antioxidant enzyme activities by using appropriate concentrations of fullerol under drought stress. The results are significant for understanding the application of fullerol in agriculture under stressful conditions.

12.
Plants (Basel) ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678950

RESUMO

The present investigation was designed to improve drought stress tolerance in eggplant (Solanum melongena L.) through the exogenous application of α-tocopherol (TOC). For exogenous application, two modes, i.e., foliar spray (FS) and pre-sowing seed treatment (PS), were used. Water deficiency treatment (50% field capacity (FC)) was applied on 32-day-old seedlings of two eggplant cultivars, i.e., Janak and Black Beauty. Five levels of TOC (0 mg/L, 50 mg/L PS, 100 mg/L PS, 50 mg/L FS, and 100 mg/L FS) were applied as PS and FS. Pre-sowing seed treatment was conducted before seed sowing, while FS treatment after 30 days of drought stress treatment. After 15 days of TOC as an FS application, it was observed that drought stress significantly reduced plant growth (5-15%) and chlorophyll contents (4-10%), while it increased proline (4-6%), glycine betaine (GB) (5-10%), malondialdehyde (MDA) (10.8%), hydrogen peroxide (15-16%), relative membrane permeability (RMP) (5-8%), and the activities of peroxidase (7-8%) and superoxide dismutase (12-15%) in both eggplant cultivars. The TOC application (FS and PS) exhibited a positive role in overcoming the adverse effect of water stress on eggplants. Plant growth increased (15-18%) as a result of the application of TOC, which could be linked with improved chlorophyll, ascorbic acid (AsA), GB, proline, total soluble proteins (TSP), and the activities of peroxidase (POD) and superoxide dismutase (SOD) activities. The reactive oxygen species H2O2 was also decreased by TOC application. Overall, TOC as a foliar spray was more effective in improving the accumulation of proline, GB, AsA, and activities of SOD and POD enzymes, while PS treatment was more effective in reducing RMP and improving the TSP of eggplant. Cv. Black Beauty was comparatively better in root dry weight, chlorophyll a and b, and MDA contents, while cv. Janak in RMP, AsA, TSP, and activity of the POD enzyme. It can be inferred that the application of TOC was useful in counteracting the harmful effects of drought stress on both cultivars of eggplants.

13.
Molecules ; 17(5): 5803-15, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22592086

RESUMO

Expression analysis of crop plants has improved our knowledge about the veiled underlying mechanisms for salt tolerance. In order to observe the time course effects of salinity stress on gene expression for enzymes regulating proline metabolism, we comparatively analyzed the expression of specific genes for proline metabolism in root and shoot tissues of salt-tolerant (cv. Dunkled) and salt-sensitive (cv. Cyclone) canola (Brassica napus L.) cultivars through reverse-transcriptase polymerase chain reaction (RT-PCR); following the NaCl treatment for various durations. Both lines showed an increase in ∆¹-pyrroline-5-carboxylate synthase1 (P5CS1) gene expression after induction of salt stress with enhanced expression in the root tissue of the tolerant line, while maximum expression was noted in the shoot tissues of the sensitive line. We observed a much reduced proline dehydrogenase (PDH) expression in both the root and shoot tissues of both canola lines, with more marked reduction of PDH expression in the shoot tissues than that in the root ones. To confirm the increase in P5CS1 gene expression, total proline content was also measured in the root and shoot tissues of both the canola lines. The root tissues of canola sensitive line showed a gradually increasing proline concentration pattern with regular increase in salinity treatment, while an increase in proline concentration in the tolerant line was noted at 24 h post salinity treatment after a sudden decrease at 6 h and 12 h of salt treatment. A gradually increasing concentration of free proline content was found in shoot tissues of the tolerant canola line though a remarkable increase in proline concentration was noted in the sensitive canola line at 24 h post salinity treatment, indicating the initiation of proline biosynthesis process in that tissue of sensitive canola.


Assuntos
Brassica napus/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Prolina/metabolismo , Plântula/metabolismo , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Raízes de Plantas/genética , Brotos de Planta/genética , Prolina/genética , Prolina Oxidase/genética , Prolina Oxidase/metabolismo , Pirróis/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Salinidade , Tolerância ao Sal/fisiologia , Plântula/genética , Cloreto de Sódio
14.
PLoS One ; 17(5): e0266372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613077

RESUMO

Thiamin is a crucial vitamin with a vast variety of anti-oxidative and physiological roles in plants subjected to abiotic stresses. We examined the efficiency of foliar-applied thiamin (50 and 100 mM) on growth, yield quality and key-biochemical characteristics of two cultivars (FD1 and FD3) of cauliflower (Brassica oleracea L.) under water-deficit stress. Water stress at the rate of 50% field capacity (F.C.) markedly decreased the plant biomass, leaf total phenolics and ascorbic acid (AsA) contents. In contrast, drought-induced increase was noted in the leaf [hydrogen peroxide (H2O2), AsA, proline, malondialdehyde (MDA), glycinebetaine (GB), total soluble proteins and oxidative defense system in terms of high activities of peroxidase (POD), and catalase (CAT) enzymes] and the inflorescence (total phenolics, proline, GB, MDA, H2O2, and activities of SOD and CAT enzymes) characteristics of cauliflower. However, foliar-applied thiamin significantly improved growth and physio-biochemical attributes except leaf and inflorescence MDA and H2O2 contents of both cauliflower cultivars under water stress. Overall, application of thiamin enhanced the plant growth may be associated with suppressed reactive oxygen species (ROS) and upregulated antioxidants defense system of cauliflower.


Assuntos
Fenômenos Bioquímicos , Brassica , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Botrytis/metabolismo , Brassica/metabolismo , Desidratação/metabolismo , Peróxido de Hidrogênio/metabolismo , Prolina/metabolismo , Tiamina/metabolismo
15.
PLoS One ; 17(2): e0259520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113880

RESUMO

Okra (Abelmoschus esculentus L. (Moench) plays a significant role in humans nutrition because its fresh leaves, stems, flowers, pods and seeds, are used for multiple purposes. The present study attempted to determine the spatial variations in biochemical attributes of osmoprotectants and the oxidative defense system of okra plants. Samples of soil and okra plants (leaves and fruits) were collected from three different locations: Faisalabad region-1 (7 JB-I), Faisalabad region-2 (7 JB-II) and Pindi Bhattian. Chlorophyll contents, glycine betaine (GB), ascorbic acid (AsA), total phenolics, hydrogen peroxide (H2O2), proline, and malondialdehyde (MDA) contents were analyzed in the leaves and fruits of okra plants. Soil analyses showed that pH, electrical conductivity (EC), phosphorus (P), potassium (K), iron (Fe), and saturation of soil were higher in Faisalabad region 2, while organic matter, sand, Zn, and Cu were higher in the Pindi Bhattian region. The results from okra leaves showed that Pindi Bhattian had higher chlorophyll a, GB and H2O2 contents, while Faisalabad region 1 had a higher ratio of chlorophyll a/b compared to the other regions. However, Faisalabad regions 2 and 1 had higher leaf phenolic contents, Faisalabad regions 1 and 2 showed higher leaf proline contents, and Faisalabad region 2 possessed higher AsA and MDA contents. Analyses of okra fruits showed that Faisalabad region 2 had higher chlorophyll a and total chlorophyll contents, while Faisalabad region 1 had higher chlorophyll b contents. Faisalabad region 2 and Pindi Bhattian had higher ratios of chlorophyll a/b, and Faisalabad region 1 showed higher phenolic, AsA, H2O2, and MDA contents of okra fruit, whereas the Faisalabad regions exhibited higher proline and GB contents than the Pindi Bhattian region. Overall, okra leaves and fruits showed better responses in the Faisalabad regions, and these results may be used to screen for okra cultivars with better tolerance under different environmental conditions.


Assuntos
Abelmoschus
16.
Chemosphere ; 295: 133829, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35120959

RESUMO

Sustainable and cost-effective methods are required to increase the food production and decrease the toxic effects of heavy metals. Most of the agriculture land is contaminated with cadmium (Cd). The present study was designed to minimize the toxic effect of Cd stress (0, 10 and 20 mg kg1-) on tolerant and sensitive varieties of wheat (Punjab-2011; Sammar) and rice (Kisan Basmati; Chenab) under Zn-lysine (Zn-lys) application as foliar spray (0, 12.5 and 25 mM) and seed priming (0, 3 and 6 ppm). Remarkable decrease was observed in plant growth, physiology and biochemistry as well as increase in Cd uptake, roots to shoots and grains of both crops. Cd significantly reduced the root and shoot lengths, root and shoot dry weights, transpiration rate, photosynthetic rate, stomatal conductance and water use efficiency as well as chlorophyll contents associated with enhanced electrolyte leakage (EL), malondialdehyde (MDA) and H2O2 and Cd uptake in different plant parts including grains of both crop varieties. The foliar application of Zn-lys (0, 12.5 and 25 mM) ameliorated the toxic effect of Cd on growth and physiology associated with decrease in EL, MDA and H2O2 and improved the activities of SOD, POD, CAT and APX enzymes with decreasing Cd uptake in tolerant varieties of wheat and rice as compared to seed priming. Furthermore, it has been investigated that the foliar application of Zn-lys is effective to improve quality of wheat and rice tolerant varieties (Punjab-2011 and Chenab) under Cd contamination soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Peróxido de Hidrogênio/farmacologia , Lisina/farmacologia , Solo/química , Poluentes do Solo/análise , Triticum , Zinco/análise , Zinco/farmacologia
17.
Plants (Basel) ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297804

RESUMO

Trehalose regulates key physio-biochemical parameters, antioxidants, and the yield of plants exposed to a dry environment. A study was conducted to assess the regulatory roles of exogenously applied trehalose in drought-stressed sunflower plants. Two cultivars of sunflowers (Hysun 33 and FH 598) were subjected to drought stress (60% field capacity) and varying (0, 10, 20, and 30 mM) concentrations of trehalose. The data indicated that water stress significantly reduced the shoot length, root length, total soluble proteins, shoot Ca2+, root P, relative water content (RWC), and achene yield per plant. The foliar spray of trehalose was effective at improving plant growth, RWC, total soluble proteins, total soluble sugars, the activities of enzymatic antioxidants, Ca2+ (shoot and root), root K+, and the yield attributes. Exogenously supplemented trehalose considerably suppressed relative membrane permeability (RMP), but did not alter ascorbic acid, malondialdehyde, the total phenolics, shoot K+, or P (shoot and root) in both sunflower cultivars. The cv. Hysun 33 had better ascorbic acid, total soluble sugars, non-reducing sugars, shoot P, and root P than the other cultivar, whereas cv. FH 598 was relatively better at regulating RMP, malondialdehyde, peroxidase, and root Ca2+ concentration. Overall, exogenously supplemented trehalose, particularly at 10 mM, was effective at improving the physiochemical parameters and yield of sunflower plants under stress conditions. Therefore, a better performance of sunflower cv. Hysun 33 under drought stress can be suggested as a trehalose-induced enhancement of yield and oxidative defense potential.

18.
J Sci Food Agric ; 91(15): 2785-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21717466

RESUMO

BACKGROUND: Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. RESULTS: Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. CONCLUSION: Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents.


Assuntos
Antioxidantes/metabolismo , Carthamus tinctorius/metabolismo , Micronutrientes/metabolismo , Óleos de Plantas/metabolismo , Prolina/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Biomassa , Cálcio/metabolismo , Carthamus tinctorius/classificação , Carthamus tinctorius/enzimologia , Catalase/metabolismo , Ácido Palmítico/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Estruturas Vegetais/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Especificidade da Espécie , Estresse Fisiológico , Superóxido Dismutase/metabolismo , alfa-Tocoferol/metabolismo
19.
PLoS One ; 16(11): e0254906, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843496

RESUMO

Now-a-days, plant-based extracts, as a cheap source of growth activators, are being widely used to treat plants grown under extreme climatic conditions. So, a trial was conducted to assess the response of two maize (Zea mays L.) varieties, Sadaf (drought tolerant) and Sultan (drought sensitive) to foliar-applied sugar beet extract (SBE) under varying water-deficit conditions. Different SBE (control, 1%, 2%, 3% & 4%) levels were used in this study, and plants were exposed to water-deficit [(75% and 60% of field capacity (FC)] and control (100% FC) conditions. It was observed that root and shoot dry weights (growth), total soluble proteins, RWC-relative water contents, total phenolics, chlorophyll pigments and leaf area per plant decreased under different water stress regimes. While, proline, malondialdehyde (MDA), RMP-relative membrane permeability, H2O2-hydrogen peroxide and the activities of antioxidant enzymes [CAT-catalase, POD-peroxidase and SOD-superoxide dismutase] were found to be improved in water stress affected maize plants. Exogenous application of varying levels of SBE ameliorated the negative effects of water-deficit stress by enhancing the growth attributes, photosynthetic pigments, RWC, proline, glycinebetaine (GB), activities of POD and CAT enzymes and levels of total phenolics, whereas it reduced the lipid peroxidation in both maize varieties under varying water stress levels. It was noted that 3% and 4% levels of SBE were more effective than the other levels used in enhancing the growth as well as other characteristics of the maize varieties. Overall, the sugar beet extract proved to be beneficial for improving growth and metabolism of maize plants exposed to water stress.


Assuntos
Beta vulgaris , Betaína , Desidratação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Secas , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/metabolismo
20.
PLoS One ; 16(12): e0259585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882694

RESUMO

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Assuntos
Helianthus/crescimento & desenvolvimento , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Peroxidase/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA