Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 15(5): 926-936, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30644499

RESUMO

To develop molecularly based interpretations of the two-dimensional scattering patterns (2DSPs) of phase-separated block copolymers (BCPs), we performed coarse-grained molecular dynamics simulations of ABA tri-BCPs under uniaxial stretching for block-fractions where the A-segment (glassy domain) is smaller than the B-segment (rubbery domain), and estimated the behaviour of their 2DSPs. In BCP stretching experiments, mechanical properties are generally evaluated using a stress-strain curve. We obtained 2DSPs with different contrasts for the A- and B-segments, which are indicative of the differences between X-ray and neutron scattering experiments. The small- and wide-angle behaviours of the 2DSPs originate from the morphologies of the phase-separated domains and local bond orientations, respectively. When the block-fractions are changed for a constant stress value on the stress-strain (SS) curve, the brightness of the spots in the wide-angle region of the A- and B-segment-dominant 2DSPs decreases and increases with increasing strain, respectively. We can regard the systematic changes in the small-angle 2DSPs of the glassy domain and the wide-angle 2DSPs of the rubbery domain with changes in the SS-curve as a structure-property relationship.

2.
Macromolecules ; 56(17): 6704-6711, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720561

RESUMO

A new model is presented to predict rubber behavior during chemical aging at fixed strains. The model is validated using a carbon black-filled nitrile butadiene rubber aged in air at 125 °C. The model improves upon Tobolsky's dual network theory, designed for unfilled elastomers undergoing conventional aging but which has also often been used in rubber composites undergoing more complex aging scenarios. This work explores the shortcomings of the original model and demonstrates how the new model overcomes them. The model was validated using uniaxial tensile samples aged at 125 °C for 24-72 h at strains from 0-30%. The permanent set was measured, and the samples were tested on an Instron uniaxial test machine after aging. The cross-link density was estimated by equilibrium swelling. Results show that the new model more accurately models the stress-strain behavior to higher strains and provides more reliable estimates of chain scission and cross-linking after aging.

3.
Polymers (Basel) ; 15(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050289

RESUMO

The Payne Effect (also known as the Fletcher-Gent Effect) has a fundamental impact on the behavior of filled rubber composites and therefore must be considered during their design. This study investigates the influence of carbon black (CB) surface area and structure on the observed Payne Effect and builds on the existing models of Kraus and Ulmer to explain this phenomenon. Dynamic strain sweeps were carried out on natural rubber (NR) compounds containing eight different grades of CB at equivalent volume fractions. The loss and storage moduli were modeled according to the Kraus and Ulmer equations, using a curve optimization tool in SciPy. Subsequent regression analysis provided strong correlations between the fitting parameters and the CB structure and surface area. Using this regression analysis, this work provides further insight into the physical meaning behind the Kraus and Ulmer models, which are phenomenological in nature.

4.
RSC Adv ; 13(34): 23967-23975, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577099

RESUMO

This report presents an evaluation of thiyl radical-induced cis/trans isomerism in double bond-containing elastomers, such as natural, polychloroprene, and polybutadiene rubbers. The study aims to extensively investigate structural changes in polymers after functionalisation using thiol-ene chemistry, a useful click reaction for modifying polymers and developing materials with new functionalities. The paper reports on the use of different thiols, and cis/trans isomerism was detected through 1H NMR analysis, even at very low alkene/thiol mole ratios. The study finds that the configurational arrangements between non-functionalised elastomer units and thiolated units followed a trans-functionalised-cis units arrangement up to an alkene/thiol mole feed ratio of 0.3, while from 0.4 onward, a combination of trans-functionalised-cis and cis-functionalised-trans configurations are found. Additionally, it is observed that by increasing the level of functionalisation, the glass transition temperature of the resulting modified elastomer also increases. Overall, this study provides valuable insights into the effects of thiol-ene chemistry on the structure and properties of elastomers and could have important implications for the development of new materials with enhanced functionality.

5.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34641163

RESUMO

The introduction of dynamic bonds capable of mediating self-healing in a fully cross-linked polychloroprene network can only occur if the reversible moieties are carried by the cross-linker itself or within the main polymer backbone. Conventional cross-linking is not suitable for such a purpose. In the present work, a method to develop a self-healable and recyclable polychloroprene rubber is presented. Dynamic disulfide bonds are introduced as part of the structure of a crosslinker (liquid polysulfide polymer, Thiokol LP3) coupled to the polymer backbone via thermally initiated thiol-ene reaction. The curing and kinetic parameters were determined by isothermal differential scanning calorimetry and by moving die rheometer analysis; tensile testing was carried to compare the tensile strength of cured compound, healed compounds and recycled compounds, while chemical analysis was conducted by surface X-ray Photoelectron Spectroscopy. Three formulations with increasing concentrations of Thiokol LP-3 were studied (2, 4, 6 phr), reaching a maximum ultimate tensile strength of 22.4 MPa and ultimate tensile strain of 16.2 with 2 phr of Thiokol LP-3, 11.7 MPa and 10.7 strain with 4 phr and 5.6 MPa and 7.3 strain with 6 phr. The best healing efficiencies were obtained after 24 h of healing at 80 °C, increasing with the concentration of Thiokol LP-3, reaching maximum values of 4.5% 4.4% 13.4% with 2 phr, 4 phr and 6 phr, respectively, while the highest recycling efficiency was obtained with 4 phr of Thiokol LP-3, reaching 11.2%.

6.
Microscopy (Oxf) ; 67(5): 296-300, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893959

RESUMO

An in situ straining holder capable of tensile deformation and high-angle tilt for electron tomography was developed for polymeric materials. The holder has a dedicated sample cartridge, on which a variety of polymeric materials, such as microtomed thin sections of bulk specimens and solvent-cast thin films, can be mounted. Fine, stable control of the deformation process with nanoscale magnification was achieved. The holder allows large tensile deformation (≃800 µm) with a large field of view (800 × 200 µm before the deformation), and a high tilt angle (±75°) during in situ observations. With the large tensile deformation, the strain on the specimen can be as large as 26, at least one order of magnitude larger than the holder's predecessor. We expect that meso- and microscopic insights into the dynamic mechanical deformation and fracture processes of polymeric materials can be obtained by combining the holder with a transmission electron microscope equipped with an energy filter. The filter allows zero-loss imaging to improve the resolution and image contrast for thick specimens. We used this technique to study the deformation process in a silica nanoparticle-filled isoprene rubber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA