Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0284443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058511

RESUMO

Data simulation is fundamental for machine learning and causal inference, as it allows exploration of scenarios and assessment of methods in settings with full control of ground truth. Directed acyclic graphs (DAGs) are well established for encoding the dependence structure over a collection of variables in both inference and simulation settings. However, while modern machine learning is applied to data of an increasingly complex nature, DAG-based simulation frameworks are still confined to settings with relatively simple variable types and functional forms. We here present DagSim, a Python-based framework for DAG-based data simulation without any constraints on variable types or functional relations. A succinct YAML format for defining the simulation model structure promotes transparency, while separate user-provided functions for generating each variable based on its parents ensure simulation code modularization. We illustrate the capabilities of DagSim through use cases where metadata variables control shapes in an image and patterns in bio-sequences. DagSim is available as a Python package at PyPI. Source code and documentation are available at: https://github.com/uio-bmi/dagsim.


Assuntos
Software , Simulação por Computador
2.
Nat Mach Intell ; 3(11): 936-944, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37396030

RESUMO

Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel deep learning method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA